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A B S T R A C T

The purpose of this study was to develop a two-dimensional shallow water flow model using the finite volume
method on a combined unstructured triangular and quadrilateral grid system to simulate coastal, estuarine and
river flows. The intercell numerical fluxes were calculated using the classical Osher-Solomon's approximate
Riemann solver for the governing conservation laws to be able to handle wetting and drying processes and to
capture a tidal bore like phenomenon. The developed model was validated with several benchmark test problems
including the two-dimensional dam-break problem. The model results were well agreed with results of other
models and experimental results in literature. The unstructured triangular and quadrilateral combined grid
system was successfully implemented in the model, thus the developed model would be more flexible when
applying in an estuarine system, which includes narrow channels. Then, the model was tested in Mobile Bay,
Alabama, USA. The developed model reproduced water surface elevation well as having overall Predictive Skill
of 0.98. We found that the primary inlet, Main Pass, only covered 35% of the fresh water exchange while it
covered 89% of the total water exchange between the ocean and Mobile Bay. There were also discharge phase
difference between MP and the secondary inlet, Pass aux Herons, and this phase difference in flows would act as
a critical role in substances’ exchange between the eastern Mississippi Sound and the northern Gulf of Mexico
through Main Pass and Pass aux Herons in Mobile Bay.

1. Introduction

Ocean circulation models with the structured grid system have been
dominant in last few decades since it is easy to construct the compu-
tational grid system and the matrix of the algebraic equation system has
a regular structure. However, this grid system has shortcomings for
applications where physical boundaries are complex and thus may re-
quire excessively fine grids in order to resolve complex boundaries in
the model (Casulli and Walters, 2000). For this reason, unstructured
grid ocean circulation models, which are more flexible than structured
grids to fit complex boundaries (Shi et al., 2001), have been rapidly
taking over structured grid models.

Another main feature which many ocean circulation models have is
the Finite Difference Method (FDM). The FDMs are intuitive and easy to
implement for simple problems and require less computational effort
than the Finite Element Method (FEM) and the Finite Volume Method
(FVM). The FDMs, however, are not suitable for the unstructured grid
system which mentioned above. Recently, FVM for two-dimensional
shallow water equations (SWEs) has been received considerable

attention in the numerical computation of fluid dynamics since FVM
takes the merits of both FDM and FEM. In some sense, FVM can be
considered as FDM applied to the differential conservative form of the
conservation laws, written in arbitrary coordinate systems. Hence, FVM
can be applied using any structured grids in FDM or unstructured grids
in FEM, and generally, FVM needs less computational efforts than FEM
(Caleffi et al., 2003; Ng et al., 2006).

The finite volume method is based on the integral form of the
conservation equation; therefore, the method can ensure that the basic
quantities, such as mass and momentum, remain conserved (Wang and
Liu, 2002; Jenny et al., 2003; Chen et al., 2007). Furthermore, the
scheme in the conservation form can be constructed to capture shock
waves (Zhao et al., 1994; Caleffi et al., 2003; Hirsch, 2007). Because of
these advantages of FVM over FDM or FEM, many two-dimensional
ocean or riverine circulation models have adapted FVM (e.g., Zhao
et al., 1994, 1996; Anastasiou and Chan, 1997; Chippada et al., 1998;
Valiani et al., 2002; Skoula et al., 2006; Wu et al., 2014). Even though
these models have been developed based on FVM, grid systems and
equation solving schemes in these models are different one another.
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Some models use unstructured triangular meshes only (e.g., Anastasiou
and Chan, 1997; Chippada et al., 1998; Skoula et al., 2006; Wu et al.,
2014), unstructured quadrilateral meshes only (e.g., Valiani et al.,
2002), or combination of either triangular cells or quadrilateral cells
(e.g., Zhao et al., 1994, 1996).

Nowadays some dams in South Korea are faced with an unexpected
collapse, and one of those dams is located close to an estuary where
directly connected to the open sea. Thus, it is required to simulate dam-
break scenarios to reduce the impact of a sudden catastrophic dam
break. For this reason, we developed a two-dimensional finite volume
unstructured grid model in which the well-known Osher-Solomon
scheme, which is robust, smooth, and has good ability to solve a tidal
bore like system (Zoppou and Roberts, 2003; Castro et al., 2016), is
implemented. The model we developed and introduced in this paper is
named as a two-dimensional Riverine and Estuarine circulation Model
(REM2D), and the term REM2D will be used throughout this paper. We
constructed REM2D to be able to use both triangular, which is good for
complex geometries, and quadrilateral cells, which is good for a straight
narrow channel-like system, to have advantages of both grid systems.

Furthermore, we used the bottom elevation referenced coordinate
rather than using mean sea level (MSL) referenced coordinate. Many
ocean models, such as the Unstructured Grid Finite Volume Community
Ocean Model (FVCOM) and the Regional Ocean Modeling System
(ROMS), use their origin at the MSL. These models just require water
depth to describe bathymetry, but the information is not sufficient
when simulating an estuary connected to a river which is located above
the MSL. For this reason, to simulate river flow in such system, a model
should use a coordinate system which origin is below the bottom to
represent the gravity flow correctly, and the system is what we used in
our model (Fig. 1).

First, we tested REM2D comparing with existing dam-break analy-
tical solutions and results of other models for the model verification to
show the capability of REM2D for simulation of dam-break problems.
Then, we applied REM2D in the Mobile Bay system in Alabama, USA,
which has a complex geometry and large river discharge, to validate
REM2D in real scale along with classical dam-break tests; un-
fortunately, there were not enough data to validate REM2D in the
provisional target area in South Korea, and that is why we chose Mobile
Bay. After validating REM2D we mainly focused on the discharge in-
teraction between two inlets of the Mobile Bay, Main Pass (MP) and
Pass-aux-Herons (PaH).

2. Model development

2.1. Governing equations

The two-dimensional (2D) shallow water equations (SWEs) can be
traditionally written in a single differential conservative law form with
source terms:
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where U is the vector of conserved physical variables; F U( ) and G U( )
are the flux vectors in the x and y direction respectively; S U( ) is the
forcing source or sink term; h represents the total water depth; u and v
represent the depth-averaged horizontal velocities in x and y directions;
ρ is the density of water; t is time; g is the gravitational acceleration; b
is the bottom elevation; AH represents the horizontal diffusion coeffi-
cient; f is the Coriolis parameter. In this equation, τb

x and τb
y are bottom

stresses and can be estimated using empirical formulae such as the
Manning's equation or the law of the wall:
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where n is the Manning's roughness coefficient, k is the von Karman
constant, z is the water depth above the bottom, zo is the bottom
roughness coefficient. Both Manning's equation and the quadratic fric-
tion relation, widely known as the log law, in Eq. (5) are implemented
in REM2D, and users can choose one of the given methods for their
research purpose.

Similarly τ τandw
x

w
y in Eq. (4) are the wind stresses in x and y di-

rections, respectively, at the free surface defined as:
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where uw and vw are the x and y components of wind speed measured at
10 m above the free surface, ρa is the density of air, and Cda is the drag
coefficient. The drag coefficient is normally a function of the roughness
of the sea surface and the wind speed at some height above the water
surface. In this model, the empirical relationships both developed by
Garratt (1977) and Wu (1982) are implemented:
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where Ws is the wind speed in meters per second. These two equations
are probably the most well-known linear laws for the drag coefficient,
and they are implemented in many recognized ocean circulation
models. For example, the Garratt's (1977) equation is used in the ad-
vanced circulation (ADCIRC) storm surge model (Dietrich et al., 2011),Fig. 1. Schematic diagram of the coordinate system used in the model.
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