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a  b  s  t  r  a  c  t

Catch-at-age  or catch-at-size  stock  assessment  models  require  specification  of  an  effective  sample  size
(ESS) as  a weighting  component  for  multinomial  composition  data.  ESS  weights  these  data  relative  to
other  data  that  are  fit, and  is  not  an  estimable  parameter  within  a model  that  uses  a  multinomial  likeli-
hood.  The  ESS  is  typically  less  than  the  actual  sample  size  (the  number  of fish)  because  of  factors  such as
sampling  groups  of fish  (clusters)  that  are  caught  together.  A common  approach  for  specifying  ESS  is  to
iteratively  re-fit  the  model,  estimating  ESS  after  each  fit so  that  the  standardized  residual  variance  is “cor-
rect,” until  ESS converges.  We  survey  iterative  methods  for determining  ESS  for  a  multinomial  likelihood
and  apply  them  to  two  Great  Lakes  whitefish  stocks.  We  also  propose  an extension  of  such  methods:
(the  Generalized  Mean  Approach  – GMA)  for the  case  where  ESS  is based  on  mean  age  (or  length)  to
account  for  correlation  structures  among  proportions.  Our  extension  allows  for  greater  flexibility  in  the
relationship  between  ESS  and sampling  intensity.  Our  results  show  that  the  choice  of  ESS  estimation
method  can  impact  assessment  model  results.  Simulations  (in  the  absence  of  correlation  structures)
showed  that  all the  approaches  to calculating  effective  sample  size  could  provide  reasonable  results  on
average,  however  methods  that  estimated  annual  ESS  independently  across  years  were  highly  imprecise.
In our  simulations  and application,  methods:  that  did  account  for correlation  structure  in annual  pro-
portions  produced  lower ESS  than  those  that  did  not  and  suggested  that  these  methods  are  adjusting  for
a deviation  from  the  multinomial  correlation  structure.  We  recommend  using  methods  that  adjust  for
correlation  structures  in the  proportions,  and  either  assuming  a constant  ESS  or,  when  there  is substan-
tial  inter-annual  variation  in  sampling  levels,  assuming  ESS  is  related  to sampling  intensity  and  using the
GMA  or  a similar  approach  to estimate  that  relationship.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Catch-at-age and catch-at-size models are commonly used tools
in stock assessment (e.g., Legault and Restrepo, 1998; Methot and
Wetzel, 2013; Punt et al., 2013). These models use observations of
cohorts through time to estimate population parameters. Because
cohort size is a fundamental component, an accurate implemen-
tation of the relative abundance of age or size classes is critical to
model accuracy. In a model’s likelihood function, observations of
the relative abundance of class size (expressed as proportions) are
frequently compared to model-produced estimates during fitting
using the multinomial likelihood (Francis, 2014). The influence of

∗ Corresponding author at: Quantitative Fisheries Center, 375 Wilson Rd. Room
101, East Lansing, MI  48824, USA.

E-mail address: truesd16@msu.edu (S.B. Truesdell).

the proportions-at-age or at-size on the fit of the likelihood function
is determined by the multinomial’s effective sample size parame-
ter (ESS), which defines the expected amount of variability from a
simple random sample of fish ages or sizes (Folmer and Pennington,
2000; Methot and Wetzel, 2013). Determining ESS is important
because this weighting factor can impact the model output quanti-
ties used by managers such as population size and fishing mortality
rates (Francis, 2011).

The observed population composition data may  be more vari-
able than or have a correlation structure that differs from that of a
multinomial sample of the observed number of fish. Two causes
are the spatial behavior of the fish and the spatial grouping of
the sampling method (e.g., a trawl catches many fish together).
This amounts to cluster samples (Cochran, 1977), which carry
less information than the number of individuals actually aged or
measured (McAllister and Ianelli, 1997; Folmer and Pennington,
2000; Stewart et al., 2014), so ESS is typically smaller than the
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Fig. 1. Options for relating ESS to sampling intensity in catch-at-age or catch-at-size
models: (A) a set ESS no matter the measured sample size, (B) proportional rela-
tionship between ESS and measured sample size up to a maximum, (C) proportional
relationship between ESS and measured sample size, and (D) asymptotic relation-
ship  between ESS and measured sample size. In principle, relationships between
ESS  and actual sample size could apply to other measures of sampling effort, such
as  the number of trips sampled rather than number of fish aged or measured.

number of individuals processed. A third cause, applicable to
length-structured models, is the potential for large recruitment
events to impact multiple adjacent length bins, producing such
correlations. Further complicating the issue, age compositions are
often calculated based on both a length composition and an age-
length key. Due to this complex data structure, ESS cannot be
determined directly from the number of fish aged or measured,
although in some cases it can be estimated based on sampling
theory (e.g., Crone and Sampson, 1998; Pennington et al., 2002)
or using an approach such as bootstrapping (e.g., Stewart et al.,
2014); however it has been suggested that these data should not be
weighted independently of an assessment model because much of
the composition error may  result from model process error rather
than observation error (Francis, 2016). ESS also cannot be included
as a parameter in models that use multinomial likelihoods for
composition data because it is not estimable in the multinomial
likelihood function.

Various methods have been employed for fixing and estimating
multinomial ESS (Francis, 2011; Maunder, 2011), and these include
ad-hoc and iterative approaches. To recognize that the informa-
tion content of the samples is less than the actual number of fish
observed, ad-hoc methods may  set a fixed ESS (e.g., Fournier and
Archibald, 1982; Fig. 1A) or treat the annual number of observations
as the ESS up to a maximum value, and use this maximum when the
number of observations exceeds the threshold (e.g., Fournier et al.,
1998; Caroffino and Lenart, 2010; Fig. 1B). These ad-hoc approaches
can be based on estimation of actual variances in other fisheries if
formal sampling designs permit this (Crone and Sampson, 1998),
informal consideration of the observed variation in age composi-
tions relative to what would be expected from a multinomial, or
other forms of professional judgement.

A variety of iterative approaches have been advanced (e.g.,
McAllister and Ianelli, 1997; Francis, 2011; Maunder, 2011). Francis
(2011) argued that decisions regarding weighting (variances) for
other data should be made first, followed by tuning ESS using iter-
ative approaches. Most approaches determine how variable data
are about the model predictions, relative to how variable they are
expected to be given the assumed ESS, and then refit the stock
assessment model repeatedly, adjusting the ESS at each iteration

to be consistent with the variation seen at the last iteration until
ESS is stable.

These iterative methods were classified by Francis (2011) based
on whether they accounted for correlation structures or not, and
their assumptions about ‘process error’ (which in this case can be
viewed as over-dispersion relative to a multinomial distribution
based on the number of fish aged or measured). Herein, correlation
structure refers to a deviation from the weak negative correla-
tion in proportions between all pairs of bins that arises from the
multinomial distribution and the constraint that proportions sum
to 1.0. Our expectation is that such structure will generally involve
the strongest positive correlations in observed proportions from
proximal bins (e.g., ages 5 and 6) with positive correlations weak-
ening and eventually becoming negative between proportions in
bins that are farther apart (e.g., 4 and 9). Methods that do not allow
for correlation structures generally seek to set ESS to match vari-
ation in the proportions at age or length versus what would be
expected from a multinomial distribution. This includes McAllister
and Ianelli’s (1997) commonly used approach (e.g., Wilberg et al.,
2005; Campana et al., 2010; Berger et al., 2012). Methods that can
account for correlation structure seek to set ESS to match variation
in mean age or mean length that would be expected if the com-
position data arose from a multinomial distribution. As originally
implemented by McAllister and Ianelli, their iterative approach cal-
culated an ESS for each year (for a data type), and then averaged
these and used the same ESS for each year in the next iteration of
the assessment model. Thus they assumed that information content
was constant over years and unrelated to any variation in sam-
pling effort (Fig. 1A). Francis (2011) proposed two hypotheses that
account for overdispersion, based on the idea that the adjustment
of ESS from the number of samples should either be multiplicative
or additive. For the multiplicative case, if a particular composition
sample was  based on Ñ observations, then its information content
(ESS) is �N = wÑ, where �N is the ESS and w is a multiplicative scaling
factor (Fig. 1C). For the additive case, 1

�N
= 1
Ñ

+ 1
NMAX

, the informa-
tion content initially increases directly with sample number but
approaches an asymptote, NMAX (Fig. 1D).

The hypothesized direct proportionality between ESS and sam-
pling intensity arising from multiplicative error could apply to
other measures of sampling intensity such as number of trips
rather than number of fish aged or measured. Iterative methods
that do not account for correlation structure and use the observed
variation in proportions along with the variability expected in a
multinomial sample can at least theoretically calculate an ESS for
each year. Maunder (2011) suggested that in such cases rather
than using these directly one could fit a statistical model relat-
ing these nominal effective sample sizes to observed sampling
intensities, and use the predictions from the statistical model as
the ESS in the next iteration. This allows for consideration of
more general relationships between ESS and sampling intensity
than those arising from multiplicative or additive error acting
alone. For example one might hypothesize that information con-
tent of composition samples increases to an asymptote as a
function of the number of trips sampled, rather than number
of fish aged, but there would be no reason to assume an ini-
tial slope of 1.0. Even when using number of ages or lengths
as the predictor, an initial slope of less than 1.0 seems pos-
sible, i.e., both multiplicative and additive error could operate
together. This approach is not directly applicable to the meth-
ods that allow for correlation structures, as only one deviation
between observed and expected means is available for each year.
Thus, for those methods, Francis (2011) indicated that either wfor
the multiplicative hypothesis or NMAX for the additive hypothesis
is adjusted so the resulting variation is matched exactly for each
iteration.
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