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A B S T R A C T

In a mixture of individuals from different populations, population proportions and individual identities are
estimated by comparing the characteristics of individuals in the mixture to a (usually) genetic baseline of
population-specific characteristics. Using simulated data sets, we examined the performance of a genetic mixture
analysis that incorporated data on non-baseline character state frequencies. Population-specific state frequencies
of non-baseline characters were well-estimated in many scenarios. We found benefits of incorporating non-
baseline characters in mixture analysis; both individual assignments and estimates of population proportions
were improved. However, both the sample size and the quality of the baseline data were more important. We did
not see any improvement in estimating baseline character state frequencies even when highly informative non-
baseline data was used. Our results suggest that non-baseline data might improve mixture analyses, and we note
that population-specific estimates of non-baseline character state frequencies are often useful in and of
themselves.

1. Introduction

The Bayesian mixture analysis estimation methodology developed
by Pella and Masuda (2001) uses a baseline of character state
frequencies (such as the frequency of a specific allele at a locus) in
each population to provide probability distributions for the proportions
of each population in a mixture. As a part of its calculation methodol-
ogy, it also provides the probability that an individual in a mixture
belongs to a particular population. One novel aspect of this particular
Bayesian approach is that rather than simply making inference about
the mixture from baseline data, it acknowledges that the baseline data
also comes from a sample that may not be fully representative of the
underlying population; it then uses data from the mixture to improve
the estimates of the character state frequencies in each population. That
is, instead of thinking of this methodology as a way to estimate
proportions in a mixture, it can instead be viewed as a way to use
mixture data to help estimate population characteristics.

This leads to several hypothetical questions. First, could this
approach be used to estimate the frequency in a population of
alternative states of characters for which there are no baseline data?
For example, salmon populations that migrate to sea and are caught in a
mixed-stock fishery might differ in age or length frequencies when they
are caught (Larson et al., 2013; Myers et al., 2007). These age and
length frequencies at the time and location where the fishery occurs
would not be a part of the baseline data, since baseline data are
collected from fish of previous generations on the spawning grounds

(Guthrie et al., 2015; Seeb et al., 2007). A few recent studies have
demonstrated the practicality of estimating the population-specific
frequencies of non-baseline character states (e.g., Moran et al., 2014;
Tsehaye et al., 2016).

Second, are these non-baseline character states useful for better
characterizing the origin of an individual organism in a mixture? Such
an improvement would be quite helpful – large samples from a mixture
are required for estimating population frequencies, often forcing
aggregation of samples from large areas and long periods of time.
The resulting coarse spatio-temporal resolution limits our ability to
explore questions about fine scale population distribution and migra-
tory patterns. For some management purposes, such as enforcing
endangered species protections, determining what population an
individual originated from is essential (Nielsen et al., 2012; Ogden
and Linacre, 2015).

Either case seems reasonable. For example, if a population is
characterized by a smaller than average size, it seems intuitive that
noting that an individual in a mixture is small should increase our
certainty that it is a member of that population. However, it’s also
plausible that the information provided by size is “used up” in
estimating the population-specific size distributions, resulting in no
improvement in estimating the origin of individuals.

Finally, assuming the state frequencies of characters not sampled in
the baseline could be estimated, would these characters then be useful
for better characterizing the makeup of the population mixture? For
example, could one use the age or length of an individual salmon
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caught in a mixed-stock fishery to better ascertain its identity, and thus
improve estimates of the proportion of each population in the mixture?

In this study, we use simulated data to examine under which
circumstances state frequencies of a non-baseline character can be
estimated using data from a mixture, whether using such characters
improves estimates of baseline character state frequencies, and when
using a non-baseline character in a mixture analysis improves estimates
of population proportions and/or increases the accuracy of assignment
of individuals to their population of origin.

2. Methods

2.1. Simulated data

We simulated baseline data for four populations with two indepen-
dent baseline characters. The first character had four possible states,
and frequencies differed among each population. The second character
had two states, and pairs of populations had identical frequencies,
mimicking a regionally-varying character. We simulated baseline data
by randomly generating state frequencies for each character from each
population. Each character’s baseline sample state frequencies were
determined by generating a random draw from a Dirichlet distribution
whose parameters were the product of the true frequencies and
different sample sizes.

We then simulated a mixture where 70% of the individuals came
from one population and 10% each came from the other three
populations. Each individual in the mixture had character states drawn
randomly from its population's true character state frequencies. In
addition to the two characters contained in the baseline, each indivi-
dual was assigned a state for another independent character for which
there was no baseline data. There were four states for this character,
and state frequencies differed among the four populations.

2.2. Scenarios investigated

We created scenarios that differed in: the number of individuals
sampled in each population to create the baseline (20, 100, 500),
number of individuals sampled in the mixture (also 20, 100, and 500),
the contrast among populations in state frequencies of the two baseline
characters (Table 1), and the contrast among populations in state
frequencies of the non-baseline character (Table 1). These scenarios are
abbreviated in Figures using the sample size followed by two letters, the
first of which gives the contrast in the baseline characters and the
second that of the non-baseline character. For example, “100LH”
indicates that sample sizes (both baseline and mixture) were 100, that
baseline characters had low contrast, and that the non-baseline

character had high contrast.

2.3. Computation

For each scenario, we simulated 1000 sets of data. We applied a
slightly modified version of the Pella-Masuda Bayesian estimation
methodology (2001) to each dataset, and estimated both the proportion
of each population in the mixture and the frequencies of alternative
states of each character in each population. The posterior distributions
of the estimates were compared to the true values. At each iteration of
the MCMC calculation in the Pella-Masuda methodology, each indivi-
dual in the mixture is assigned a population identity (see below); after
convergence, we tracked the frequency of assignment of the simulated
individuals to the correct population. We tracked how well the state
frequencies of the non-baseline character were estimated, how well the
state frequencies of the baseline characters were estimated, and
whether and to what extent using an informative non-baseline char-
acter improved estimates of baseline frequencies and assignment of
individuals in the mixture to their population of origin.

The Bayesian statistical model of the data and parameters was as
follows:

The baseline data Y = [yijh], where yijh is the count of state h of
character j in the baseline sample of size ni from population i.

yij. ∼ multinomial(ni, qij.), where qijh is the true frequency of state h
of character j in population i.

(qij1, qij2,…) ∼ Dirichlet(βj1, βj2,…), under the assumption that state
frequencies exhibit some degree of similarity among populations (this
assumption was not true for our simulated data, but is a plausible
assumption in most real-world applications).

Simplifying Pella and Masuda’s (2001) approach, we set a weakly
informative prior for the q’s for character j as a Dirichlet distribution,
with the value of its parameters βjh equal to the unweighted average of
the sampled state frequencies across all populations (i.e., Σhβjh = 1). For
the non-baseline character, the parameter values were set to 1/H,
where H was the number of states for the character.

The mixture data X = [xm], where xm is the “genotype”, or set of
character states of individual m in the mixture.

Pr(xm comes from stock i) is proportional to pi × Pr(xm | stock i)

Pr(xm | stock i) = qi1m × qi2m × … (if continuous characters are
involved, the frequency is replaced by the probability density for the
observed state value of the character (Bromaghin et al., 2011)).

Following Pella and Masuda (2001), an uninformative prior for the
p’s was Dirichlet (1/I, 1/I, …), where I is the total number of
populations.

Computation of the MCMC sample from the posterior distributions
was accomplished with a Gibbs sampler, which involves a sequence of
draws from distributions of parameters conditional on the current
values of the other parameters. Computation was simplified by using a
data augmentation step (Gelman et al., 2014; Pella and Masuda, 2001).
At each iteration of the MCMC algorithm, individuals in the mixture
were assigned a population of origin by random draw based on the
current probabilities an individual with their character states originated
from each population. Thus, each iteration of the Gibbs sampler
consisted of the following steps:

1. Assign a random population identity to each individual in the
mixture sample, where the probability of assignment to population
i is proportional to the current value of pi × Pr(xm | stock i).

2. Draw random values for the proportion of each population (pi) in the
mixture from a Dirichlet distribution where the i-th parameter = 1/
I + the count of all individuals in the mixture assigned to popula-
tion i.

3. Draw random values for the population-specific state frequencies of
all characters, baseline and non-baseline, where the frequency of

Table 1
State frequencies for each character at each level of contrast.

Contrast level State values

low baseline Character 1: frequency of state i = 0.4 in population
i, = 0.2 in other populations
Character 2: state 1 = 0.67 in populations 1–2, 0.33 in
populations 3–4
state 2 = 0.33 in populations 1–2, 0.67 in populations 3–4

high baseline Character 1: frequency of state i = 0.7 in population
i, = 0.1 in other populations
Character 2: state 1 = 0.9 in populations 1–2, 0.1 in
populations 3–4
state 2 = 0.1 in populations 1–2, 0.9 in populations 3–4

low non-baseline frequency of state i = 0.4 in population i, = 0.2 in other
populations

high non-baseline frequency of state i = 0.7 in population i, = 0.1 in other
populations

perfect non-baseline frequency of state i = 1.0 in population i, = 0.0 in other
populations
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