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a  b  s  t  r  a  c  t

Abundance  index  (AI), used  to establish  the  suitability  index  (SI),  provides  critical  information  in habitat
suitability  index  (HSI)  modeling.  The  distributions  of  AIs  derived  from  fisheries-independent  surveys
tend  to be  right  skewed  because  of  heterogenous  distributions  of  fishes.  The  existence  of  large  AI values
and  failure  to  consider  it  might  result  in  underestimation  of HSI  values  for most  sampling  areas.  We
compared  the  performance  of  HSI  models  based  on  original  AIs (without  any  transformation)  versus
rescaled  AIs  (i.e.,  log-transformed  AIs)  using  American  lobster  (Homarus  americanus) along  the coast  of
Gulf  of  Maine  as  an  example.  Impacts  of  weighting  environmental  variables  on HSI modeling  based  on
boosted  regression  tree  (BRT)  were  also  evaluated.  Both  cross-validation  and  predicted  habitat  suitability
maps  suggested  that  the  weighted  HSI  model  based  on log-scaled  AI data  tended  to  yield  a  more  reliable
prediction  of  optimal  habitats  for American  lobster.  The  unweighted  HSI  model  based  on  the  original
AI  data,  however,  tended  to  underestimate  optimal  habitats  and overestimate  suboptimal  habitats.  We
recommend  using  log-transformed  AIs  and  determining  the  weights  of different  environmental  variables
based  on  the  BRT  method  in HSI  modeling,  especially  when  AI data  are  highly  skewed.

©  2016  Published  by  Elsevier  B.V.

1. Introduction

Suitable habitats represent favorable environmental conditions
for species and thus provide space-time envelopes of optimal con-
ditions (Petitgas et al., 2014). The abundance of species could be
reduced, possibly to extinction when the suitable habitat shrinks or
disappears (Morrison et al., 2006). Identification of essential habi-
tats has been recognized as an effective way to identify priority
areas for conservation and establish area-based management plans
(Yi et al., 2016), which are key components for ecosystem-based
fisheries management (Vayghan et al., 2013; Tanaka and Chen,
2016).

Habitat suitability index (HSI) models, developed in the early
1980s, have become one of the most important tools in identifying
the suitable habitat of organisms (e.g., Chen et al., 2010; Chang et al.,
2013; Yu et al., 2016). An empirical HSI model is based on a suit of
suitability indices (SIs) as a function of one or more key environ-
mental variables to indicate the habitat suitability of target species
(Brown et al., 2000; Tian et al., 2009; Chen et al., 2010). All of SIs
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are then combined to develop a composite HSI score with its values
ranging from 0 to 1 to represent “poor” to “good” habitat quality
(Brooks, 1997). The outputs of HSI modeling in combination with
geographic information systems (GIS) can provide a flexible cost-
effective decision support tool for natural resource management,
ecological impact assessments and ecosystem restoration (Brooks,
1997; Burgman et al., 2005).

In HSI modeling, the abundance index (AI) is generally used to
establish the suitability index (SI) for each habitat variable (Tian
et al., 2009; Vayghan et al., 2013; Tanaka and Chen, 2016), and a
positive linear relationship was assumed to exist between SIs and
AIs (e.g., Chang et al., 2013; Vayghan et al., 2013). The areas with
the highest AIs are designated as optimal habitats (SI = 1.0) and the
areas with the lowest AIs as poor habitats (SI = 0) (Brown et al.,
2000; Tian et al., 2009; Chang et al., 2013). However, AIs tend to
have highly right skewed distribution as a result of large spatial
heterogeneity of fish distributions (von Szalay and Somerton, 2005;
Cope and Haltuch, 2012). The occurrence of large AI values might
result in underestimation of SI values for most areas. For example,
for a species with AIs ranging from 0 to 5000 (ind./tow), the SI val-
ues for sampling sites with AIs of 5000, 4000, 3000, and 1000 will
be equal to 1.0, 0.8, 0.6 and 0.2, respectively. However, the habi-
tat quality for the first three sampling sites with high AI values are
similar actually, and the SI value (SI = 0.2) for the last sampling site
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with the AI value of 1000 is clearly underestimated. In this case, the
assumption that a simple linear relationship exists between the SIs
and AIs may  be misleading. This problem has received little atten-
tion and rarely been considered in HSI modeling. One approach to
avoid this problem is to use rescaled AIs (e.g., log-transformed AIs)
in SI models, which can reduce the impact of large AI values on
habitat suitability modeling.

All environmental variables in HSI modeling are usually
assumed to have the same weights due to a lack of information
about the relative importance of these variables (e.g., Tian et al.,
2009; Vayghan et al., 2013; Yu et al., 2016). This implies that dif-
ferent environmental variables have the same impacts on the AIs,
which is obviously unrealistic. Thus, there is a need to develop
an approach that can differentiate the role of each environmen-
tal variable in the construction of HSI models. Gong et al. (2012)
demonstrated that different weighting schemes would result in
different spatial distributions of suitable habitats. A few studies
explored the impacts of assigning weights for different environ-
mental variables in HSI models based on relative importance of
each variable identified through literature review or expert knowl-
edge (e.g., Gong et al., 2012; Zohmann et al., 2013; Yi et al., 2016).
A structured approach is needed for assigning weights to different
environmental variables in habitat modeling.

Boosted regression tree (BRT) models are built using an algo-
rithm that combines the strengths from two statistical techniques:
regression trees and boosting, which can result in strong predictive
performance and good descriptions of modeled relationships (Elith
et al., 2008). Regression trees automatically fit interactions between
variables, can handle missing values, are insensitive to outliers, and
can model almost any type of predictor variables (Compton et al.,
2012). Boosting improves model performance by focusing on the
observations that are hard to predict with a sequential model fit-
ting process and by adding a probabilistic component to optimize
predictive performance (Compton et al., 2012). The advantage of
BRTs in ecological studies is that it can cope with non-linear rela-
tionships, correlated and interacting variables, and can interpret
complex relationships between species and environment (Torres
et al., 2015). In addition, BRTs are unaffected by multicollinearity,
missing predictor values and outliers (Elith et al., 2008). The relative
importance of each environmental variable can be determined by
its contribution to the total variance explained by the BRT model.
In this study, BRTs were used to determine the weights of different
environmental variables in the HSI modeling.

Comparative studies are needed to evaluate the performance
of different approaches in constructing HSI models before they
can be used in identifying critical habitats (Chen et al., 2010). We
use American lobster (Homarus americanus) in the coastal areas of
Gulf of Maine as an example to evaluate the performance of dif-
ferent HSI models in quantifying suitable habitats based on data
collected from the Maine–New Hampshire inshore bottom trawl
survey from 2000 to 2013. Our specific objectives are to compare
the performance of HSI models derived using original AIs (without
any transformation) versus rescaled AIs (i.e., log-transformed AIs)
and evaluate the effectiveness of BRT-based weighting approach.
The approach derived in this study can improve the quality of HSI
modeling, leading to better definitions of suitable habitats.

2. Materials and methods

2.1. Study area

The Maine-New Hampshire inshore trawl survey is a semi-
annual fishery-independent trawl survey conducted by the Maine
Department of Marine Resources (DMR) in spring and fall of each
year since 2000. The survey includes coastal waters up to 12 miles

Fig. 1. Spatial distribution and frequency of standardized abundance indices (AIs)
(ind./tow) for American lobster (Homarus americanus) based on spring and fall
Maine–New Hampshire inshore bottom trawl surveys from 2000 to 2013.

offshore and follows a stratified random design by depth and
regions (Sherman et al., 2005; Chen et al., 2006b). The number of
stations per stratum is allocated in proportion to the area of each
stratum, and a target of 115 stations is selected for sampling dur-
ing each survey. The target tow duration is 20 min at 2.1–2.3 knots
to cover an average swept area of ∼1.48 km2 per tow (Sherman
et al., 2005; Tanaka and Chen, 2016). At each station, tow date,
tow location (latitude and longitude), tow duration, environmen-
tal variables (e.g., bottom temperature, bottom salinity, and depth),
and biological information of the catch are recorded (Sherman et al.,
2005). Further details of the survey design and procedures can be
found in Sherman et al. (2005, 2014). Fourteen years (2000–2013)
survey data for spring (April–June) and fall (September–December)
were used in this study (Fig. 1).

The standardized AI of American lobster was  calculated for each
station (Tanaka and Chen, 2016) as:

AI =
(

Count
Tow duration

)
× 20 (1)

where count is the total number of lobsters caught per tow, and tow
duration is towing time measured in minutes, which was  standard-
ized to 20 min  at each sampling station.

The AIs standardized using Eq. (1) has a highly right skewed
distribution (Fig. 1), with the mean, median and maximum AIs
being 113.2, 34.7 and 1822.0 (ind./tow) in spring and being 156.9,
62.9 and 1924.2 (ind./tow) in fall, respectively. Log-transformations
give strong transformation effect on distribution shape (von Szalay
and Somerton, 2005) and are also necessary to normalize the data
for parametric statistical analysis (Soniat and Brody, 1988). Hence,
the natural logarithmic transformation was  applied to reduce the
skewness, with a value of 1 being added to the AIs (hereafter lnAI) to
account for zero catch values (Howell and Kobayashi, 2006; Mugo
et al., 2010) based on the preliminary assessment of alternate trans-
formations.



Download English Version:

https://daneshyari.com/en/article/5765594

Download Persian Version:

https://daneshyari.com/article/5765594

Daneshyari.com

https://daneshyari.com/en/article/5765594
https://daneshyari.com/article/5765594
https://daneshyari.com

