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a Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca, Spain
b Department of Natural Resources, Mediterranean Institute for Advanced Studies (IMEDEA CSIC-UIB), C/Miquel Marqués 21, 07190 Esporlas, Balearic
Islands, Spain
c Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, Germany

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 26 February 2016
Received in revised form 7 December 2016
Accepted 8 December 2016
Handled by A.E. Punt
Available online 19 December 2016

Keywords:
Fishing effort
Catches per unit of effort
Creel survey
Angler types
Bootstrap
Loligo vulgaris

a  b  s  t  r  a  c  t

Although  some  stocks  are  being  severely  exploited  by  recreational  fishing,  estimating  the  biomass
extracted  (harvest,  H) by recreational  fisheries  is  difficult,  especially  for marine  recreational  fisheries.
One  way  to estimate  H by  recreational  fisheries  is to  combine  the  fishing  effort  (E)  with  catch-per-unit-
of-effort  (CPUE)  data.  However,  naively  ignoring  heterogeneity  in  E and  CPUE may  result  in  biased  and
imprecise  estimates  of  H. We  propose  a framework  to address  three  relevant  heterogeneity  levels:  the
spatial  and  temporal  heterogeneity  of recreational  E, environmental  effects  on  recreational  CPUE,  and
the  variability  in angler  skills  (between-angler  heterogeneity).  Specifically,  we  combine  (i) space-time
model  predictions  of  E (number  of  boats  per  km2)  on  the  day  scale  (i.e.,  fishing  trips),  (ii) environmentally
driven model  predictions  of daily  catch  (number  of  squid  per  fishing  trip),  and  (iii) off-  and  on-site  sur-
veys  to  account  for angler  heterogeneity.  The  precision  of  the  H estimates  was  assessed  using  bootstrap
confidence  intervals.  This  framework  was  applied  to the  recreational  fishery  for the  squid  Loligo  vulgaris
at Palma  Bay  (Mallorca  Island,  western  Mediterranean).  The  estimated  effort  was  15,750  angler-fishing
trips  (95%  CI:  13,086  to  18,569),  which  yielded  an  annual  harvest  of 20.6  tons  (95% CI: 16.9–24.5).  This
harvest was  estimated  to  represent  34%  of  the total  commercial  landings  in  Mallorca,  which  highlights
the  importance  of  recreational  harvesting  and the  need  to  account  for recreational  fisheries  to  improve
squid  stock  management.  The  framework  proposed  here  provides  a  promising  tool  for  estimating  H  in
other heterogeneous  recreational  fisheries  and  may  be  the  first  step  toward  assessing  the  actual  impact
of recreational  fisheries  on squid  populations.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The amount of biomass captured by fisheries is a key parameter
in estimating exploitation rates and is important for predicting and
managing exploited stocks (Hilborn and Walters, 1992; Hsieh et al.,
2006; Anderson et al., 2008; Neubauer et al., 2013). However, this
remains elusive for many marine recreational fisheries (Arlinghaus
et al., 2015). This is especially evident in the Mediterranean Sea,
where monitoring and assessment of the catch by recreational
fisheries are rarely conducted (Font and Lloret, 2014). Typically,
only the harvests of commercial fleets are accounted for, with
those of recreational fisheries being neglected (Cooke and Cowx,
2004). However, growing evidence suggests that recreational fish-
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eries may  play important roles in the declines of some exploited
stocks (Coleman et al., 2004; Cooke and Cowx, 2004). Disregarding
this component of mortality may  result in overoptimistic views of
the status of such stocks and promote management options that
lead to overfishing (Post et al., 2002). Providing accurate and pre-
cise harvest estimates is therefore a pivotal issue when addressing
the management of recreational fishing, which should be aimed at
ensuring the sustainable exploitation of marine resources (Steffe
et al., 2008; Hartill et al., 2012).

The recreational fishing harvest (H) could be easily estimated by
the product of effort (E) and catch-per-unit-of-effort (CPUE). How-
ever, these two variables are typically spatially and/or temporally
structured and are subject to different sources of variability, which
makes the estimation of the harvest attributable to recreational
fishing a major challenge. The heterogeneity and uncertainty of E
for recreational fisheries are related to variability due to the large
number of anglers in comparison with the relatively low number of
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commercial fishermen (Cooke and Cowx, 2004). In addition, com-
mercial fishermen are typically subject to mandatory surveys (e.g.,
vessel monitoring systems or automatic identification systems)
that may  provide information regarding the spatial and tempo-
ral distributions of fishing effort (Mills et al., 2007; Gerritsen and
Lordan, 2011; McCauley et al., 2016). Such data have improved
knowledge of the spatial dimensions of some fisheries and have
contributed to better estimates of management reference points
(e.g., maximum sustainable yield) that are needed for proper stock
management (Beare et al., 2005; Cotter and Pilling, 2007; Mesnil
et al., 2009).

Unfortunately, spatial monitoring occurs in almost no recre-
ational fisheries. Moreover, among those studies that consider the
spatial dimension of effort, most focus on lake landscapes (Hunt
et al., 2011; Post et al., 2012) and few address marine open water
(Parnell et al., 2010; Alós et al., 2012; Fujitani et al., 2012; Hartill
et al., 2016). Consequently, some recreational fishery collapses have
been related to incorrect assumptions about the spatial distribution
of fishers (Post et al., 2008).

Similar to the case for E, the reporting of CPUE is mandatory for
most commercial fleets. However, for recreational fleets, obtain-
ing catch data is even more challenging than obtaining effort data.
Full censuses of all anglers are often unavailable (McCluskey and
Lewison, 2008); however, the number of recreational anglers is
often orders of magnitude greater than the number of commercial
fishermen (Cooke and Cowx, 2004; Arlinghaus et al., 2015). More-
over, they are less accessible and more heterogeneous (Arlinghaus
et al., 2013). There are many sources of heterogeneity in CPUE
(e.g., differences attributable to fishing trip, access point, zone,
fishing modality, angler expertise, angler motivation, etc.), which
may  result in large biases (Pollock et al., 1994, 1997; Hunt, 2005;
National Research Council, 2006; McCluskey and Lewison, 2008).
Creel surveys might provide reliable information about both E and
CPUE, which can be combined to estimate H (Pollock et al., 1994;
Hartill et al., 2012), but complex, stratified sampling designs are
needed (Pollock et al., 1994, 1997; Griffiths et al., 2013; Rocklin
et al., 2014), and proper error propagation (needed for estimating
precision) requires sophisticated statistical methods (Lockwood,
1997; McCormick et al., 2013). Moreover, it is widely recog-
nized that recreational CPUE can vary substantially as a function
of environmental characteristics (e.g., Ortega-Garcia et al., 2008;
Kuparinen et al., 2010; Cabanellas-Reboredo et al., 2012a).

We  propose an alternative framework to address the spatial and
temporal variability in E and the environmentally driven variability
in CPUE. Moreover, we consider between-angler heterogeneity by
categorizing the anglers into types, and propose a bootstrap-based
framework for combining these three sources of uncertainty. This
framework was applied to the recreational fishery for the European
squid Loligo vulgaris Lamarck (1798). Specifically, the proposed
framework combines (i) model-based estimates of E (varying in
space and time; Cabanellas-Reboredo et al., 2014a,b), (ii) model-
based estimates of CPUE (varying in time; Cabanellas-Reboredo
et al., 2012a) and (iii) between-angler differences to estimate H
for a given year.

2. Materials and methods

2.1. Case study and sampling units

The analytical strategy we propose is aimed at estimating H as
a function of E and CPUE in spatially and temporally structured
marine recreational fisheries while accounting for different sources
of uncertainty and evaluating the effect of angler heterogeneity in
CPUE in relation to angler skills. We  applied this strategy to the
recreational fishery for squid at Palma Bay (Mallorca Island, NW

Mediterranean; Fig. 1) and used 2010 as the model year. A detailed
description of this recreational fishery is provided by Cabanellas-
Reboredo et al. (2014b).

The study region was divided into spatial units of 1 km2, and
the temporal unit was  day (fishing trips). Such a space-time scale
results from a trade-off between maximizing the spatial-temporal
resolution when predicting E and CPUE and minimizing the prob-
lems related to between-unit dependencies (i.e., avoiding spatial
and temporal autocorrelation; Cabanellas-Reboredo et al., 2012a,
2014a,b; Fig. 1). Consequently, Palma Bay was divided into 173 cells
(Cabanellas-Reboredo et al., 2014a,b), which resulted in a total of
63,145 units (i.e., 173 cells multiplied by 365 days in a year).

2.2. Harvest estimation ignoring angler heterogeneity

2.2.1. Bootstrapping fishing effort (E)
All of the bootstrapping procedures described in Sections 2.2

and 2.3 were compiled into a single, custom script (Supplementary
material) using R (http://www.r-project.org/). Eij (i.e., the number
of anglers on day i in cell j) was  estimated from the number of boats
fishing in a given cell:

Eij =
Bij∑

b=1

Fijb, (1)

where Bij is the predicted number of boats (B) on day i in cell j,
and Fijb is the number of anglers on each boat (b) at a given day (i)
and cell (j). Model-based estimates of Bij were obtained from the
Bayesian space- and time-explicit model described by Cabanellas-
Reboredo et al. (2014a). This model was fitted to the data (i.e., the
number of boats per cell) obtained from 63 visual censuses cover-
ing the full area considered (Palma Bay) to obtain the positions of
any recreational squid boats (Cabanellas-Reboredo et al., 2014a,b;
Fig. 1). This spatially- and temporally-explicit model allowed the
expected number of boats in any cell on any day during the model
year (2010) to be estimated. The explanatory variables of the model
are aimed at relating E to the main motivations of anglers (fishing
quality, costs, facility development, environmental quality, inter-
actions among anglers, and regulations; Hunt, 2005).

To obtain not only point estimates but also reliable confidence
intervals (CI) for each value of Bij , we produced N random bootstrap
samples (N = 1000), taking into account not only the uncertainty in
the model parameters but also the three levels of stochastic vari-
ation considered in the model (cell, day and unstructured residual
variation; Cabanellas-Reboredo et al., 2014a,b). In this approach,
a given bootstrap sample results from combining the same ran-
dom sample from each of the posterior distributions of the model
parameters (i.e., accounting for the correlation patterns between
such parameters) with a given combination of values for the cor-
responding explanatory variables (i.e., the specific values of the
variables corresponding to day i and cell j) plus a random sam-
ple of each of the three stochastic error levels mentioned above.
Thus, N bootstrap samples for the expected number of boats were
produced for each of the statistical units (173 cells multiplied by
365 days).

We next addressed the number of anglers. The number of
anglers per boat (Fb) from the 1,271 boats surveyed in the
63 censuses was available (Cabanellas-Reboredo et al., 2014a,b).
Therefore, we first explored the existence of between-season dif-
ferences in Fb by fitting the observed data to a positive Poisson
model (implemented with the vglm function of the VGAM pack-
age; Yee, 2015). The significance of the results was  tested using a
likelihood ratio test against the null model (i.e., a model ignoring
season). Accordingly, N bootstrap samples from the empirical data
(i.e., the observed distribution of Fb) corresponding to day i (i.e.,
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