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A B S T R A C T

The surrogate-based simulation-optimization techniques are frequently used for optimal groundwater re-
mediation design. When this technique is used, surrogate errors caused by surrogate-modeling uncertainty may
lead to generation of infeasible designs. In this paper, a conservative strategy that pushes the optimal design into
the feasible region was used to address surrogate-modeling uncertainty. In addition, chance-constrained pro-
gramming (CCP) was adopted to compare with the conservative strategy in addressing this uncertainty. Three
methods, multi-gene genetic programming (MGGP), Kriging (KRG) and support vector regression (SVR), were
used to construct surrogate models for a time-consuming multi-phase flow model. To improve the performance
of the surrogate model, ensemble surrogates were constructed based on combinations of different stand-alone
surrogate models. The results show that: (1) the surrogate-modeling uncertainty was successfully addressed by
the conservative strategy, which means that this method is promising for addressing surrogate-modeling un-
certainty. (2) The ensemble surrogate model that combines MGGP with KRG showed the most favorable per-
formance, which indicates that this ensemble surrogate can utilize both stand-alone surrogate models to improve
the performance of the surrogate model.

1. Introduction

Dense nonaqueous-phase liquids (DNAPLs) are now frequently de-
tected in groundwater throughout the world, because of the widespread
use, improper disposal, accidental spills and leaks of petrochemical
products (Kueper and Mcworter, 1991). Because of their low solubility,
low mobility and high density in water, DNAPLs may remain in aquifers
for long periods of time, and thus ultimately become long-term con-
tinuous sources of groundwater contamination (Qin et al., 2007). Sur-
factant-enhanced aquifer remediation (SEAR), an enhancement to the
conventional pump-and-treat technique, is a promising way to remove
DNAPLs from aquifers (Schaerlaekens et al., 2005). By adding surfac-
tants to the water, the solubility and mobility of DNAPLs in an aquifer
can be increased (Delshad et al., 1996), which makes SEAR more effi-
cient than the conventional pump-and-treat technique. Because the cost
of the SEAR process is high, optimizing design for cost-effectiveness is
of great value.

Simulation-optimization (S/O) techniques have been used ex-
tensively to solve such problems (Jiang et al., 2015; Luo et al., 2013).

When such techniques are employed, the numerical simulation model
would be called thousands of times before the optimal design is ob-
tained, which is computationally expensive, and may be prohibitive
(Hou et al., 2015). Using surrogates (also known as meta-models or
proxy models) to replace the computationally expensive simulation
models has become commonplace.

However, no matter how well the surrogate model approximates the
simulation model, errors caused by surrogate-modeling uncertainty
exist. In constrained optimization (constraints being surrogate models),
the obtained solution may be infeasible because of surrogate errors
(Viana et al., 2010). He et al. (2010) regarded the error between si-
mulation model and surrogate model as a stochastic variable and
adopted the chance-constrained programming (CCP) method to in-
corporate it into the optimization model for groundwater remediation
design. However, before this method is adopted, the hypotheses of
normality and zero-means for the errors generated by surrogate models
should be tested, which cannot always be achieved.

Recently, researchers have focused on conservative strategy-based
surrogate models (also called conservative surrogates), which push the
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optimal solution into the feasible region (Pan et al., 2012). In many
engineering problems, there is an incentive to obtain approximations
that are as close as possible but on the safer side in terms of the actual
response (Picheny et al., 2008). In groundwater remediation design
optimization, such a response may represent the minimum allowable
value of the contaminant removal rate that, to avoid failure, must not
be overestimated. In this paper, we call a surrogate model conservative
when the estimations are lower than the true responses. That is to say,
conservative surrogates tend to underestimate target values. In con-
trast, general surrogate models are unbiased; that is, the estimations are
equally likely to be lower and higher than the actual value (Pan et al.,
2012). To date, conservative surrogate models have been used in
structural analysis of vehicle engineering (Zhu et al., 2013) and aircraft
engineering (Acar et al., 2007), but have not previously been applied in
optimization of groundwater remediation design.

Many techniques for surrogate modeling have been proposed, such
as artificial neural networks (ANNs) (Luo et al., 2013), Kriging (KRG)
(Zhao et al., 2016), support vector regression (SVR) (Ouyang et al.,
2017), and extreme learning machines (ELMs) (Jiang et al., 2015).
More recently, multi-gene genetic programming (MGGP) (Hinchliffe
et al., 1996; Searson et al., 2007) has been designed to develop the
input–output relationship of a system, and has attracted the attention of
many researchers across a broad range of fields (Pan et al., 2013;
Pandey et al., 2015; Mohammadzadeh et al., 2016). The main ad-
vantage of MGGP is its ability to develop a compact and explicit pre-
diction equation in terms of different model variables without assuming
a prior form of the existing relationships (Muduli and Das, 2015). A
previous study (Ouyang et al., 2017) demonstrated the superiority of
MGGP over KRG and SVR. Recently, researchers have tended to com-
bine multiple surrogate models in ensembles instead of selecting only
the best model and discarding the rest (Acar and Rais-Rohani, 2008;
Goel et al., 2006; Viana et al., 2009). However, the combination of
MGGP surrogate modeling with other techniques has not previously
been evaluated.

The aim of the present study is to determine an optimal ground-
water remediation design for DNAPL-contaminated sites with minimum
costs under certain constraints. To address the abovementioned con-
cerns, this study 1) combines an MGGP surrogate model with other
surrogate models to form ensembles and make comparisons between
them, and 2) adopts a conservative strategy to address surrogate-
modeling uncertainty in case of failure. The CCP method is used for
comparison.

2. Methodology

2.1. MGGP

MGGP is a robust variant of genetic programming (GP) and is de-
signed to generate empirical mathematical models of the input–output
relationship from the datasets. GP is based on the evaluation of a single
gene, whereas MGGP is constructed from a number of genes (Gandomi
and Alavi, 2012; Searson et al., 2007). Each gene evolved by MGGP is a
structured tree composed of functions and terminals (Searson et al.,
2007), as can be seen in Fig. 1. The function set can include elements
such as arithmetic operators (i.e., plus, minus, divide, multiply), non-
linear functions (e.g., sin, cos, tan, exp., tanh, and log) or Boolean op-
erators (Garg et al., 2014). The terminal set consists of constants and
variables of the model (Garg et al., 2014).

2.2. Ensemble of surrogates

Based on previous studies by Bishop (1995) and Acar and Rais-
Rohani (2008), Viana et al. (2009) proposed a new method to construct
an ensemble of surrogates (also called a weighted average surrogate,
WAS), named OWSdiag (optimal weighted surrogate), and demonstrated
that this method is able to stabilize the addition of poorer surrogates up

to the point of using all created surrogates. Therefore, this method is
adopted in the present study to construct an ensemble of surrogates for
simulation of the SEAR process. This method is based on minimizing the
mean square error (MSE):
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where w is the weight vector of the weighted surrogate,
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where p is the number of training data points, e~ is the vectors of leave-
one-out cross-validation errors, and i and j indicate different surrogate
models.

Given the C matrix, the optimal weighted surrogate (OWS) is ob-
tained from minimization of the MSE as:
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The solution is obtained using Lagrange multipliers:
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In this equation, only the diagonal elements of matrix C are used to
avoid negative weights, or weights larger than one. Therefore, this
method is called OWSdiag.

2.3. Chance-constrained programming (CCP)

CCP was proposed by Charnes and Cooper (1959) as a means of
handling uncertainty by specifying a confidence level at which the
stochastic constraints are desired to be held. A typical CCP model can
be written as follows:

f xmin ( ) (5a)

subject to

≥ ≥xPr[g( , δ) b] α (5b)

∈x Rn (5c)

where x is the decision variable vector; f(x) is the objective function; g
(x,δ) is the constrained function, which contains the stochastic variable
δ; Pr[g(x,δ)≥b] indicates the probability that g(x,δ) is no less than the
predefined value b; and α∈[0,1] is the confidence level, which means
that the constraint is satisfied with a probability of at least α. If the
probability density function (pdf) of δ is known, then Eq. (5b) can be
substituted with its deterministic equivalent (He et al., 2010; Tiedeman
and Gorelick, 1993):

− ≥− α σxE[g( , δ)] Φ ( )· b1 (6)

where E[∙] is expected value; Φ−1(α) is value of the standard normal
cumulative distribution corresponding to the confidence level of α; and
σ is the standard deviation of δ.

2.4. Conservative strategy-based surrogate

For a given set of sample points, a general unbiased surrogate, g x( ),
can be constructed to approximate the actual value using surrogate
modeling techniques. A conservative surrogate can be obtained by
multiplying or adding a constant to the unbiased surrogate:

 = +g x g x s( ) ( )c m (7)
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