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A semi-analytical approximation for transient matrix diffusion is developed for use in numerical contaminant
transport simulators. This method is an adaptation and extension of the heat conduction method of Vinsome
andWesterveld (1980) used to simulate heat losses during thermally enhanced oil recovery. The semi-analytical
method is used in place of discretization of the low permeability materials, and it represents the concentration
profile in the low permeability materials with a fitting function that is adjusted in each element at each time-
step. The resulting matrix diffusion fluxes are added to the numerical model as linear concentration-dependent
source/sink terms. Since only the high permeability zones need to be discretized, the numerical formulation is
extremely efficient compared to traditional approaches that require discretization of both the high and low per-
meability zones. The semi-analytical method compares favorably with the analytical solution for transient one-
dimensional diffusion with first order decay, with a two-layer aquifer/aquitard solution, with the solution for
transport in a fracture with matrix diffusion and decay, and with a fully numerical solution for transport in a
thin sand zone bounded by clay with variable decay rates.
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1. Introduction

There are thousands of sites around the world where groundwater
has been contaminated by industrial activities. Many of these sites
have been contaminated by chlorinated volatile organic compounds
(CVOCs), often in the form of dense nonaqueous phase liquids
(DNAPLs). DNAPLs serve as a concentrated source of groundwater con-
tamination, and most dissolved plumes of CVOCs can be traced back to
concentrated source zones. Considering that source concentrations can
be four or five orders ofmagnitude greater thanmaximumcontaminant
levels (MCLs), restoration of source zones to pristine conditions is diffi-
cult; however, reduction of CVOC plumes is a realistic goal that may be
achieved through various combinations of source and plume remedia-
tion.Much research over the past three decades has focused on technol-
ogy development for both source and plume remediation at sites
contaminated by CVOCs.

Unfortunately, some CVOC sites have proven to be exceedingly diffi-
cult to address due to the phenomenon ofmatrix diffusion.Matrix diffu-
sion, also called “back diffusion,” occurs when contaminants diffuse
fromhigh permeability zones into adjacent lowpermeability zones dur-
ing a “loading period”. During the “release period”, the contamination
may be removed from the high permeability zones, but contaminants
in the low permeability zones gradually diffuse back into the high

permeability zones at significant levels (Parker et al., 1994, 1997; Ross
and Lu, 1999; Slough et al., 1999; Espositio and Thomson, 1999;
O'Hara et al., 2000; Reynolds and Kueper, 2001, 2002, 2004; Liu and
Ball, 2002; Parker et al., 2004; Falta, 2005; Chapman and Parker, 2005;
Parker et al., 2008; Sale et al., 2008; Sale et al., 2013). This process
may occur in any heterogeneous setting, but it is particularly important
in certain fractured bedrock sites, and in sites with extensive clay lenses
or layers. These types of complex site conditions tend to lead to plumes
that are long lived, requiring extensive long-term monitoring.

Analytical solutions have been developed for modelingmatrix diffu-
sion in single or parallel fractures (Neretnieks, 1980; Rasmuson and
Neretnieks, 1981, Tang et al., 1981, Sudicky and Frind, 1982, West et
al., 2004), in thick aquitards underlying permeable aquifers (Parker et
al., 2004; Liu and Ball, 2002; Seyedabbasi et al., 2012), in coupled aqui-
fer-aquitard systems (Sale et al., 2008), and in thin low permeability
zones (Yang et al., 2015). The analytical solutions are widely used
(see, for example Farhat et al., 2012), but they are restricted to idealized
conditions.

Several numerical simulations of the back diffusion process have
been performed. These simulations have used conventional contam-
inant transport modeling approaches where the transport occurs in
high permeability zones due to advection and dispersion, and in
the low permeability zones due to molecular diffusion (Parker et
al., 2004; Chapman and Parker, 2005; Parker et al., 2008; Chapman
et al., 2012; and Chapman and Parker, 2013). These studies have
demonstrated the ability of existing numerical transport models to
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simulate the transient matrix diffusion process. As noted by
Chapman et al. (2012), a primary challenge in modeling the matrix
diffusion process is that the diffusive fluxes at the high permeabili-
ty/low permeability interfaces are controlled by local concentration
gradients at a scale of cm. Resolving these gradients requires very
high grid resolution, resulting in computationally intensive models.
For this reason, few if any full scale three-dimensional simulations
of matrix diffusion have been reported to date.

A hybrid method that fits between fully analytical and fully numer-
icalmodeling approaches employs embedded analytical or semi-analyt-
ical functions to increase local scale model resolution without greatly
increasing computational effort. This approach has been successful in
modeling transient heat conduction in reservoirs bounded by confining
units (Vinsome and Westerveld, 1980) and in fractured reservoirs
(Pruess andWu, 1988, 1993). Since the governing differential equation
for matrix diffusion is analogous to the heat conduction equation, this
approach could be an attractive option for simulating contaminant ma-
trix diffusion.

2. Heat conduction method of Vinsome andWesterveld

Steam and hot water injection are commonly used to enhance oil
recovery from permeable oil reservoirs. Thermal conduction into ad-
jacent low permeability zones can result in significant heat losses
from the target reservoir. Conventional numerical simulation ap-
proaches for modeling the oil reservoir and adjacent confining
units requires discretization of the confining units as well as the res-
ervoir. This can result in greatly increased simulation run times com-
pared to models that only consider the oil reservoir itself.
Recognizing that the heat conduction process in confining units is
primarily one-dimensional, Vinsome and Westerveld (1980) devel-
oped an elegant semi-analytical approximation for the heat conduc-
tion losses. This approach replaces discretization of the confining
units with a temperature dependent heat source/sink term that is
added to gridblocks that are adjacent to the confining layers. Their
method has been shown to be both efficient and accurate, and it is
widely used in thermal enhanced oil recovery and geothermal reser-
voir simulators (Pruess andWu, 1993; Pope et al., 1999; Pruess et al.,
1999; Pruess and Battistelli, 2002; Varavei and Sepehrnoori, 2009;
Shi et al., 2009; Motley and Prevost, 2010).

Vinsome and Westerveld represent the temperature profile in the
confining units with a fitting function of the form.

Tl zl; tð Þ ¼ TtþΔt þ pzl þ qz2l
� �

e−zl=d ð1Þ

where zl is the distance into the low permeability material, Tt+Δt is the
current temperature at the interface between the reservoir and the con-
fining unit, and d is a time dependent penetration depth for heat con-
duction:

d ¼
ffiffiffiffiffiffiffi
κht

p
2

ð2Þ

where κh= kh/ρCr is the thermal diffusivity, kh is the thermal conductiv-
ity, ρ is the density and Cr is the heat capacity. The parameters p and q in
Eq. (1) are time varying fitting parameters. The temperatures in Eq. (1)
are definedwith a zero level that corresponds to the initial uniform tem-
perature in the confining layer. Algebraic expressions for parameters p
and q are developed from two conservation of energy laws. First, the
partial differential equation for heat conduction must be satisfied at
the reservoir/caprock interface:

ρCr
∂T
∂t

¼ kh
∂2T
∂z2l

�����
zl¼0

ð3Þ

and second, the rate of change of energy in the caprockmust be equal to
the conductive heat flux across the interface:

∂
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∫
∞
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∂zl

����
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ð4Þ

Unique values of the parameters p and q are associated with each
reservoir gridblock adjacent to the interface, and these parameters are
updated during each time-step to represent the changing temperature
profile in the confiningunits. The conductive heatflux into the confining
unit is added to the reservoir gridblock energy balance as a linear tem-
perature-dependent source/sink term using Fourier's Law with Eq. (1):

Fh ¼ −kh
∂T
∂zl

����
zl¼0

¼ kh
TtþΔt

d
−p

 !
ð5Þ

Since this method simulates the conductive response in the confin-
ing units, only the reservoir is discretized, greatly reducing the compu-
tation effort needed to simulate the process. In amultidimensional flow
simulation, only those gridblocks adjacent to the confining units would
use the semi-analytical conduction terms.

3. Matrix diffusion method

The governingpartial differential equation for transientmatrix diffu-
sion is analogous to the differential equation for heat conduction, except
that the matrix diffusion equation contains a first order decay term. As-
suming that decay occurs only in the aqueous phase, one-dimensional
matrix diffusion is governed by:

Rl
∂Cl

∂t
¼ τlD

∂2Cl

∂z2l
−λlCl ð6Þ

The subscript l in this equation denotes properties that correspond
to the low permeability matrix or aquitard. Here, Cl is the aqueous con-
centration, Rl is the retardation factor, τl is the tortuosity,D is themolec-
ular diffusion coefficient, and λl is the first order decay rate.

3.1. Calculation of matrix diffusion flux

Following Vinsome and Westerveld (1980) we assume a fitting
function for the concentration in the low permeability zone:

Cl zl; tð Þ ¼ CtþΔt þ pzl þ qz2l
� �

e−zl=d ð7Þ

where Ct+Δt is the current concentration at the interface between the
high permeability and low permeability zones, the concentration pene-
tration depth is defined by:

d ¼
ffiffiffiffiffiffi
κ lt

p
2

ð8Þ

and κl = τlD/Rl. The concentrations in Eq. (7) are defined with a zero
level that corresponds to the initial (uniform) concentration in the
low permeability zone. This initial concentration would normally be
zero. The parameters p and q are found by forcing the fitting function
to satisfy the governing equation at the high permeability/low perme-
ability interface, and from an expression of mass conservation in the
low permeability material. The constraint at the interface is:

Rl
∂Cl

∂t
¼ τlD

∂2Cl

∂z2l

�����
zl¼0

−λlCljzl¼0 ð9Þ

Using a first-order finite difference approximation for time deriva-
tive at the interface, and substituting the fitting function into the right
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