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Methods for extracting empirically and theoretically sound parameter values are urgently needed in aquatic eco-
systemmodelling to describe key flows and their variation in the system. Here, we compare three Bayesian for-
mulations for mechanistic model parameterization that differ in their assumptions about the variation in
parameter values between various datasets: 1) global analysis - no variation, 2) separate analysis - independent
variation and 3) hierarchical analysis - variation arising from a shared distribution defined by hyperparameters.
We tested thesemethods, using computer-generated and empirical data, coupledwith simplified and reasonably
realistic plankton foodwebmodels, respectively.While all methodswere adequate, the simulated example dem-
onstrated that a well-designed hierarchical analysis can result in the most accurate and precise parameter esti-
mates and predictions, due to its ability to combine information across datasets. However, our results also
highlighted sensitivity to hyperparameter prior distributions as an important caveat of hierarchical analysis. In
the more complex empirical example, hierarchical analysis was able to combine precise identification of param-
eter values with reasonably good predictive performance, although the ranking of themethodswas less straight-
forward. We conclude that hierarchical Bayesian analysis is a promising tool for identifying key ecosystem-
functioning parameters and their variation from empirical datasets.
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1. Introduction

The level of detail used in contemporary plankton ecological models
varies considerably, from classic, simple nutrient-phytoplankton-
zooplankton (NPZ) models with no representation of the microbial
food web to models with a comprehensive coverage of known relevant
chemical and biological food web components and interactions
(Anderson, 2005; Vichi et al., 2007). Complexity comes at a price; e.g.
in the biogeochemical flux model of Vichi et al. (2007), the modeler is
faced with parameterizing model equations describing five or six state
variables (chemical constituents), including a total of app. 20 group-
specific parameters for every phytoplankton functional group included
in themodel. The increasinguse of complexmodels in the 2000swas ac-
companied by cautionary comments that questioned the sufficiency of
the ecological knowledge and empirical data used to support them
(Anderson, 2005; Flynn, 2006). On the other hand, climate change and

other environmental threats and challenges of the modern world will
clearly not wait for the acquisition of perfect scientific knowledge.
Thus, models that are realistic enough to allow extrapolation of possible
future data with at least some level of confidence are in urgent demand
(Le Quere, 2006).

One suggested approach for walking the line between models too
complex to be reliable or understandable and those too simple to be
useful has been to start with parsimonious models that are transparent
and biologically still feasible, while including only essential aspects of
the ecosystem. With parsimonious (but not too simplistic) mechanistic
models surprisingly complicated, sometimes even counter-intuitive
perturbation response patterns of enclosed natural plankton communi-
ties can be reproduced (e.g. Thingstad et al., 2010 and Lignell et al., 2013,
and references therein). Thesemodels can then bemade stepwisemore
complexwith thorough exploration of the importance of the new prop-
erties introduced at each step (Anderson, 2005; Thingstad et al., 2010;
Shimoda and Arhonditsis, 2016). Moreover, such models require rigor-
ous assessment of the adequacy of their structure and parameterization.
For example, Franks (2009) reported a difference of more than two or-
ders of magnitude in the half-saturation constant (K) values for both
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ammonium (NH4
+) and nitrate (NO3) uptake of phytoplankton from 10

recent well-cited plankton ecosystem models. This variation in the
values adopted for parameter K is much larger than any realistic natural
variation in the efficiency of the nutrient uptake it is related to (e.g.
Aksnes and Egge, 1991; Lignell et al., 2013). A possible explanation for
this wide variation is that even in cases of new nutrient inputs, the net
change in phytoplankton standing stocks is determined by the balance
between growth and loss, and similar net changes can be reproduced in
models by combining rapid growth (low K value) with rapid loss (e.g.
via grazing) and correspondingly low growth (high K) and loss rates.

Recently, Shimoda and Arhonditsis (2016) evaluated the develop-
ment practices and performance of 124 freshwater andmarineplankton
functional group (also called plankton functional type, PFT) models
used in the past 30 years. They concluded that while there have been
some improvements since previous criticisms, aquatic modelling stud-
ies still do not consistently follow conventional procedures, such as sen-
sitivity analyses and validation. Moreover, the models generally do not
perform very well in predicting empirical data. The authors recom-
mendedmore rigorous practices, including the handling of uncertainty,
and called for improved dialogue between empiricists and modelers.

We argue that Bayesian analysis with Markov chain Monte Carlo
(MCMC)methods offers attractive solutions to the challenges in aquatic
ecosystemmodelling, such as in obtaining the ‘right’model parameters,
improving predictive performance and handling uncertainty. Bayesian
MCMCmethods provide a powerful and highly flexible tool for studying
ecosystem functioning and identifying key parameters byfittingmodels
describing biological processes to empirical data (Haario et al., 2006;
Malve et al., 2007; Lignell et al., 2013). For instance, Malve et al.
(2007) used a dynamic plankton model parameterized by an adaptive
MCMC algorithm (Haario et al., 2006) to study algal blooms and con-
cluded that a Bayesian approach with explicit handling of uncertainty
can enable management-relevant conclusions to be made despite the
presence of noisy data. Bayesian methods also have the advantage of
straightforward combination of data from different sources (Clark,
2005). In the parameterization of aquatic ecosystem models, this can
entail using laboratory measurements or theoretically derived values
of phytoplankton nutrient uptake affinities as priors for food web
model parameters estimated from time-series data (Lignell et al., 2013).

One of the simplifications potentially constraining aquatic ecosys-
tem model improvement is the assumption that the parameters de-
scribing the processes modelled are constant, while in reality the
processes likely vary geographically and temporally, e.g. due to varia-
tion in the species composition of the system (Zhao et al., 2008;
Shimoda and Arhonditsis, 2016). Apart from the modelling challenge
the variation presents, knowledge of the natural variation in ecosystem
functioning is crucial for the reliable detection of trends in the state of
the environment and for designing indicators of ecosystem status that
reflect these long-term changes. Furthermore, variability in functioning
is oneof the facets of ecosystem stability and thus an interesting and im-
portant measure of ecosystem status in itself.

Oneway to deal with the variability in these biological/biogeochem-
ical processes is to assume that the same mechanistic model describing
the processes applies everywhere, while the values of its parameters
may vary between subsystems, such as geographic locations. The sim-
plest way to achieve this is to parameterize the mechanistic process
model independently for each subsystem. However, the empirical data
available for each individual subsystem may not be sufficient to allow
adequate identification of the parameter values. A more derived solu-
tion is presented by hierarchical models in which the underlyingmech-
anistic model is embedded in a parameter model that describes the
variation in parameter values between subsystems. Hierarchical Bayes-
ian models are particularly useful for quantifying different sources of
variation in the system (Clark, 2005), including spatial and temporal
variation (Thorson et al., 2015; Ovaskainen et al., 2016b; Thorson et
al., 2016). The hierarchical structure makes it possible to include all
the empirical data of interest in a single analysis and allows the

information on one subsystem (e.g. an intensively sampled species or
location) to be generalized to other subsystems (e.g. scantly sampled
species or locations) through shared higher-level parameters. Due to
this exchange of information between subsystems, hierarchical models
have the advantage over meta-analysis of independent model compo-
nents, especially in cases where the data are sparse and/or unbalanced
(Ovaskainen and Soininen, 2011).

Lignell et al. (2013) formulated a parsimonious Northern Baltic-PFT
(NB-PFT) model with parameterization based on sound plankton eco-
logical theory (e.g. Thingstad et al., 2010; Lignell et al., 2013 and refer-
ences therein) and validation on comprehensive mesocosm data. They
applied Bayesian inference to deal with uncertainties in data, parame-
terizations and model structure. Here, we extend this Bayesian ap-
proach to allow hierarchical model structure: a mechanistic food web
model embedded in a statistical parametermodel (see Fig. 1 for the gen-
eral model structure). As the parameter model, we simply assume that
the parameter value for each subsystem is a sample from a shared log-
normal distribution. The goal of the modelling exercise is to illustrate
and critically assess the usefulness of hierarchical Bayesian analysis in
identifying parameter values, quantifying their variation and providing
useful predictions of empirical data. Using both generated test data and
natural data from themesocosm experiment in Lignell et al. (2013), we
compared full hierarchical analysis with two alternative Bayesian ap-
proaches: (1) global analysis: fitting one globalmodel, i.e. a mechanistic
food web model with a single set of parameter values to all subsystems
(as in Lignell et al., 2013) and (2) separate analysis: fitting the same
mechanistic foodwebmodel independently to each subsystem,without
assuming that the parameter values for each subsystem come from a
shared distribution. In our examples, the various subsystems are indi-
vidual experimental units, such as mesocosms. The different analysis
methods can also be seen as hierarchical models with the samemecha-
nistic process model, but contrasting parameter models; in the global
and separate analyses, we simply assume a global shared value or a
set of independent values, respectively (Fig. 1B). We evaluated two dif-
ferent aspects of the different analysismethods: first, their accuracy and
precision in identifying the parameters describing the functioning of the
system; second, their predictive performance.We also discuss the feasi-
bility and computational challenges in these approaches.

2. Material and methods

This study consists of two parts. First, we formulated a simple three-
compartment model for the planktonic food web (NPZ; Fig. 2A). We
fitted the NPZ model to data generated by the same model to compare
the ability of the hierarchical, global and separate Bayesian analyses
(Fig. 1B) to estimate the parameter values and to predict the data in a
situation where we have complete knowledge and control over the
true structure and parameter values of the system. In the second part,
we adopted the more complex, but still parsimonious and transparent
(understandable) plankton food web model of Lignell et al. (2013)
(NB-PFT; Fig. 2B), which successfully reproduced the responses of the
enclosed plankton communities to the experimental nutrient perturba-
tions (Lignell et al., 2013).We used theNB-PFTmodel and experimental
data from Lignell et al. (2013) to compare the performance of the hier-
archical, global and separate analyses in a natural situation. Both the
generated and the empirical data describe a situation in which the
mass of the various food web components (nutrients, phytoplankton,
zooplankton or their various functional groups) in the enclosed experi-
mental units is followed over time. The experimental setup of both ex-
amples is described in Table 1, and the key parameters of both food
web models are listed and explained in Table 2.

2.1. The nutrient-phytoplankton-zooplankton food web model

We began by testing the parameter estimation and predictive per-
formance of the different analysis methods with synthetic observations
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