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a b s t r a c t 

Over a variable seabed, conventional boundary layer approximations are rendered to be inadequate be- 

cause of the large variations in bed elevation in the direction of wave propagation. Applying the method 

of conformal transformation to map the flow domain with a corrugated boundary onto a uniform strip, 

we put forward a terrain-following modeling approach for Stokes boundary layer flows, accompanying 

the recent development of the exact Floquet theory of water waves over a generally periodic seabed. For 

a non-steep seabed profile, but not necessarily small undulation height compared with the water depth, 

we solve the vorticity equation to obtain the analytical solutions for the boundary layer velocities, bed 

shear stress and rate of viscous dissipation, explicitly showing the variations both across the boundary 

layer and along the bed. For a relatively steep bed profile, a remedy is proposed that allows the velocity 

profiles to be locally determined across the boundary layer avoiding solving the 2-D differential equa- 

tion for the vorticity. The modeling methodology is presented here for a constant viscosity, including the 

case of constant eddy viscosity, but can be extended to the case of variable eddy viscosity to improve 

turbulence modeling. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Wave boundary layers at the seabed, also known as the Stokes 

boundary layers for oscillatory flows, are typically very thin com- 

pared with the water depth, ranging from a few millimeters to 

centimeters depending on the bed and flow conditions ( Mei, 1989; 

Fredsøe and Deigaard, 1992; Nielsen, 1992 ). The flow structure in 

this thin layer, however, is of great importance since it determines 

the bottom shear stress and near-bed turbulent intensity, hence 

having significant influence on sediment transport, physical, chem- 

ical and biological processes near the seabed. The wave boundary 

layer can also affect the vertical structure of a co-existing current 

in shallow coastal waters ( Fredsøe and Deigaard, 1992 ). The fluc- 

tuating (in space and/or in time) bed stresses and pressure due 

to wave motion can induce, and interact with, groundwater flows 

( Mei, 1989; Belibassakis, 2012 ). 

It is generally accepted in the literature that outside the wave 

boundary layer the potential flow field of wave propagation ap- 

plies, which by itself is a mathematically challenging problem for 

generally varying topographies, even assuming the linear dynam- 

ics ( Rhines and Bretherton, 1973; Athanassoulis and Belibassakis, 

1999 ). Various approximate theories have been developed, manip- 

ulating the geometric constraints of seabed profiles, e.g. assuming 

a gentle slope, small bottom amplitude, or localized abrupt varia- 

E-mail address: jie.yu.1@stonybrook.edu 

tion such as a step (see Athanassoulis and Belibassakis, 1999 , and 

the references within). When the water wavelength, depth and 

the scale of bed variations are comparable, numerical or semi- 

numerical methods are generally sought. The computational costs 

can be significant even with the restriction to linear waves, de- 

pending on the complexity of seabed geometry. This has motivated 

studies to explore the methods for improvements. For instance, 

Athanassoulis and Belibassakis (1999 ) developed the coupled-mode 

theory to amend the shortcoming in satisfying the bottom bound- 

ary conditions in numerical representations, thereby accelerat- 

ing the numerical convergence. These authors also extended the 

coupled-mode method to treat oscillatory boundary layer effects 

over a generally variable bathymetry ( Belibassakis and Athanas- 

soulis, 2008 ). Porter and Porter (2003) formulated a transfer matrix 

method for wave scattering by a patch of small-amplitude periodic 

bed, significantly reducing the computation. Most recently, Fokas 

and Nachbin (2012) proposed a set of non-local equations in the 

propagation space for weakly nonlinear shallow water waves over 

a variable bottom using a numerical Schwarz–Christoffel mapping. 

For a periodic seabed of arbitrary amplitude and shape, the 

recent advance in the Floquet theory of linear water waves ( Yu 

and Howard, 2012 ) has provided a new and general approach that 

can be regarded as the definitive solution to this type of problems. 

What distinguishes this theory the most is not that it gives exact 

solutions but that for any frequency it gives a complete set of lin- 

ear modes. For 2-D time harmonics motions over a horizontal flat 

seabed, it is well known that the general mathematical treatment 
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Fig. 1. (a) A 2-D sketch of a homogeneous fluid layer over a periodic seabed, −∞ < x < ∞ , −h 0 + h b (x ) ≤ z ≤ 0 . (b) The uniform strip of the flow domain upon conformal 

transformation, −∞ < ξ < ∞ , −h ≤ η ≤ 0 . (c) The orthogonal curvilinear grids in the ( x, z ) plane that correspond to the Cartesian grids ξ = constant and η = constant, 

showing the terrain-following contours near the seabed. 

provides a complete basis of solutions: Given a frequency, it con- 

sists of two oppositely directed propagating waves and two infinite 

families of evanescent waves (with rapidly exponentially growing 

wave amplitudes in opposite directions). This set of flat-bottom 

linear modes has, for many years, been the only known complete 

basis for water waves and played a significant role in various 

engineering and scientific applications. For a periodic seabed, the 

set of Floquet modes provided in Yu and Howard (2012) is analo- 

gous to the above mentioned set of flat-bottom modes and in fact 

approaches the latter for the same given frequency when the bed 

undulation height is reduced to zero. Therefore, it becomes the 

second complete basis for water waves. It has been demonstrated 

that this set of Floquet modes can be used as a complete basis to 

construct solutions to boundary-value problems involving a finite 

extent of periodic bed, similar to the way that the flat-bottom 

basis is used ( Howard and Yu, 2007; Yu and Howard, 2010; Yu and 

Zheng, 2012; Weidman et al., 2015 ). 

This study is to provide the accompanying boundary layer for- 

mulation for linear waves over a periodic bed. Although the non- 

linear effects become strong as the wave approaches the shore- 

line, complete and explicit linear solutions are still very valuable in 

engineering applications and studies of coastal environments and 

sustainability. In most practical situations, the wave boundary layer 

is thin for non-breaking waves and without a resulting rectified 

current. Even in the case of a turbulent condition, the turbulence 

is confined to the thin layer just above the bed ( Jonsson, 1966; 

Johns, 1967; Fredsøe and Deigaard, 1992 ). The flow closely follows 

the seabed terrain, meaning that the Stokes boundary layer should 

be measured everywhere in the direction normal to the bed, not in 

the vertical z direction. However, the conventional boundary layer 

approximation in the vertical ( x, z ) plane assumes ∂ / ∂ z � ∂ / ∂ x . 
This becomes inappropriate when the seabed elevation varies at 

the scale comparable to the water depth. The conformal transfor- 

mation developed in Yu and Howard (2012) maps the flow domain 

over a periodic seabed onto a uniform strip with a flat bottom; see 

Fig. 1 . Since the transformation preserves angles, a vertical distance 

just above the flat bottom in the mapped plane ( ξ , η) corresponds 

to a normal distance measured from the bed surface in the physi- 

cal ( x, z ) plane. Thus, a boundary layer approach formulated in the 

mapped plane is terrain-following, and the approximations would 

be made by comparing the derivatives normal and tangent to the 

bed surface, which respectively measure the variations across the 

boundary layer and along the bed. 

In this study, we assume a constant mean water depth over the 

general periodic seabed. For many practical applications at scales 

of engineering interests, this assumption is appropriate since typi- 

cal beach slopes are gentle (of a few degrees) and the mean water 

depths do not change significantly. In real coastal regions, a long 

stretch of periodic (or nearly periodic) seabed is uncommon, but 

patches of bed undulations of different shapes can occur over a 

long distance on a shoaling beach. The terrain-following bound- 

ary layer approach presented here can be applied locally, consider- 

ing a finite stretch of periodic seabed. The corresponding potential 

wave field in such a finite domain can readily be obtained, follow- 

ing the procedure in Yu and Zheng (2012) . Here, for the simplicity 

and clear illustration, we shall only consider a free wave (a Floquet 

propagating mode) over an indefinitely long periodic bed. For long 

range propagation of waves, the attenuation of wave energy occurs 

due to the boundary layer effects. The mathematical tools exist in 

the literature to deal with long range wave propagation, in partic- 

ular over a flat or mildly varying seabed (see Mei, 1989 and the 

references within), and in principle can be adapted to analyze the 

coupling effects of wave boundary layer and wave amplitude at- 

tenuation in the conformally mapped plane. These applications are 

of scientific and engineering interest, but beyond the scope of the 

present work and will be explored elsewhere. 

Real seabed topographies are in general two-dimensional, but 

approximately one-dimensional periodic bed features are common 

( Mei, 1989; Komar, 1998; Pietrzak et al., 1990; Elgar et al., 2003 ). 

The theoretical approach presented here can be applied to obtain 

an accurate first order approximation in those situations. On the 

other hand, periodic seabeds are often used in laboratory to study 

wave-topography interactions. The theoretical predictions of the 

potential wave field and wave boundary layer over a periodic bed 

are desirable in planning and designing experiments, as well as an- 

alyzing data. 

Whereas the fully nonlinear and terrain-following wave bound- 

ary layer dynamics is described by the vorticity equation in the 

mapped plane, cf. (3.10) , the linearized equation for the Stokes 

boundary layer (3.13) is based on the assumption of small ampli- 

tude waves of the outer potential flows. Neither of these equations 

makes assumption on the steepness of seabed undulations, nor on 

the relative importance of the normal and tangential derivatives. 

They can be solved numerically if needed, matching with the outer 

potential wave field that can be provided by the Floquet theory 

( Yu and Howard, 2012 ) if linear waves are considered or by other 

wave theories deemed to be appropriate. However, for non-steep 

topographies (but not necessarily small undulation height com- 

pared with the water depth), we can further simply (3.13) , ob- 

taining explicit analytical solutions of the boundary layer velocity 

distribution and bed shear stress. This is the main focus of this 

study. 
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