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a b s t r a c t 

Development and maintenance of the linearized and adjoint code for advanced circulation models is a 

challenging issue, requiring a significant proportion of total effort in operational data assimilation (DA). 

The ensemble-based DA techniques provide a derivative-free alternative, which appears to be competitive 

with variational methods in many practical applications. This article proposes a hybrid scheme for gen- 

erating the search subspaces in the adjoint-free 4-dimensional DA method (a4dVar) that does not use a 

predefined ensemble. The method resembles 4dVar in that the optimal solution is strongly constrained 

by model dynamics and search directions are supplied iteratively using information from the current and 

previous model trajectories generated in the process of optimization. In contrast to 4dVar, which produces 

a single search direction from exact gradient information, a4dVar employs an ensemble of directions to 

form a subspace in order to proceed. In the earlier versions of a4dVar, search subspaces were built us- 

ing the leading EOFs of either the model trajectory or the projections of the model-data misfits onto 

the range of the background error covariance (BEC) matrix at the current iteration. In the present study, 

we blend both approaches and explore a hybrid scheme of ensemble generation in order to improve the 

performance and flexibility of the algorithm. In addition, we introduce balance constraints into the BEC 

structure and periodically augment the search ensemble with BEC eigenvectors to avoid repeating mini- 

mization over already explored subspaces. Performance of the proposed hybrid a4dVar (ha4dVar) method 

is compared with that of standard 4dVar in a realistic regional configuration assimilating real data into 

the Navy Coastal Ocean Model (NCOM). It is shown that the ha4dVar converges faster than a4dVar and 

can be potentially competitive with 4dvar both in terms of the required computational time and the 

forecast skill. 

Published by Elsevier Ltd. 

1. Introduction 

The ongoing trend toward massive parallelization in computer 

technologies facilitates the use of ensemble techniques in geophys- 

ical data assimilation. The ensemble approach becomes attractive 

not only because of its favorable parallelization properties ( Isaksen, 

2011; Desroziers and Berre, 2012 ). It also brings in more flexibility 

and realism in representing the background error covariances (e.g., 

Romine et al., 2014; Ménétrier et al., 2014; Descombes et al., 2015 ) 

and appears to be less vulnerable to instabilities associated with 

model linearization employed by the standard 4dVar technique. 

Besides, the ensemble approach allows to avoid costly develop- 

ment and maintenance of the linearized models and their adjoints 

which beyond being costly may impose certain limits on versatility 
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in applying dynamical constraints within a particular adjoint-based 

assimilation system. 

In the last decade, the use of ensembles in DA has been un- 

der extensive development in several directions. Apart from im- 

provements in the BEC modeling, major efforts have been made to 

combine the benefits of the 4dVar and the ensemble methods. In 

particular, Buehner et al. (2010) have shown that the 4dVar system 

with the ensemble-generated BEC outperforms the standard 4dVar 

in the global forecast model. Similar results were obtained by Kuhl 

et al. (2013) who investigated the performance of the atmospheric 

DA system ( Rosmond and Xu, 2006 ) with the hybrid BEC formula- 

tion. Coupling the regional 4dVar and ensemble KF systems ( Zhang 

and Zhang, 2012; Barker et al., 2012 ) resulted in a significant re- 

duction of errors for the forecast lead times up to 2.5 days. All 

these observations underscore the decisive role played by the flow- 

dependent BECs delivered by ensembles in improving the forecast 

skill. 
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Another extensive field of development is related to the so- 

called 4dEnVar algorithms ( Liu et al., 20 08; 20 09; Fairbairn et al., 

2014 ) which introduce ensembles into the very fabric of the 4dVar 

optimization. In contrast to 4dVar which implicitly propagates the 

BEC, these ensemble methods leverage the power of massively par- 

allel computers and explicitly approximate BEC evolution on the 

model grid. The major issue with this approach is a computa- 

tionally efficient localization of the raw ensemble-generated BECs 

which generally suffer from sampling errors caused by the limited 

number of ensemble members. In their recent studies, Desroziers 

et al. (2014) and Liu and Xue (2016) established useful relation- 

ships between the 4dVar and 4dEnVar variants with different pre- 

conditioners and covariance localization schemes. As a result of 

these developments, hybrid 4dVar and 4dEnVar methods were im- 

plemented operationally in the European ( Clayton et al., 2013 ) and 

Canadian ( Buehner et al., 2013; 2015 ) weather prediction facilities. 

In practice, the 4dEnVar technique is formulated as a search for 

optimal corrections to the control variables which is performed in 

the range of the background error covariance B . For that reason 

preconditioning is often made by the square root of B and the 

variational optimization problem is considered in the dual (obser- 

vation space) formulation which usually has much smaller dimen- 

sion than the original control space formulation and therefore will 

be more efficient computationally. In particular, this approach has 

been adopted in the NAVDAS-AR atmospheric DA system ( Rosmond 

and Xu, 2006 ). 

In the ocean, observations are less abundant than in the at- 

mosphere and the ensemble-based BEC estimates which constitute 

the backbone of 4dEnVar technique tend to be much less accurate. 

For that reason, one has to rely on heuristic BEC approximations 

(e.g. Yaremchuk et al., 2013; Weaver et al., 2015 ). Development of 

an efficient a4dVar DA method also becomes more problematic as 

one has to select a few reliable ensemble perturbations with more 

care. Early predecessors of practical a4dvar algorithms limited op- 

timization to predetermined low-dimensional subspaces spanned 

either by the reduced-order approximations of the model Green 

functions ( Stammer and Wunsch, 1996; Menemenlis and Wunsch, 

1997 ), or by the dominant principal orthogonal vectors (EOFs) as- 

sociated with the model statistics (e.g., Robert et al., 2005; Qui 

et al., 2007; Hoteit, 2008 ). The 4dEnVar technique proposed by Liu 

et al. (20 08) ; 20 09 ), generalizes this approach by representing the 

search subspace by the Schur products of the ensemble members 

with the eigenvectors of the reduced-order representation of the 

localization matrix. 

In the present paper, we further develop an iterative ensemble- 

based 4dVar technique ( Yaremchuk et al., 2009 ) which appears 

to be competitive with 4dVar in oceanographic applications 

( Panteleev et al., 2015, Yaremchuk et al., 2016a , hereinafter Y16). A 

distinctive feature of the technique is its self-sufficiency: in con- 

trast to many ensemble estimation methods which employ a given 

well-trained ensemble to optimize the control variables within a 

given time window, the a4dvar sequentially generates search sub- 

spaces (bundles of search directions) entirely from the statistics of 

the model trajectories and/or the respective model-data misfits ob- 

tained in the course of optimization. In that respect, the a4dVar 

technique resembles the 4dVar, which uses the adjoint code to 

generate a new search direction, whereas in a4dVar that direc- 

tion is replaced by a search subspace spanned by the ensemble of 

search directions. 

In the previously considered versions of the method search sub- 

spaces were built using the leading EOFs of either the model tra- 

jectory or the projections of the model-data misfits onto the range 

of B at the current iteration inheriting information from either dy- 

namical constraints or modeling errors respectively. The present 

study blends both approaches in an attempt to improve a4dVar 

performance and flexibility. In addition, search subspaces are ex- 

plicitly confined to the range of B , whose structure is constrained 

by the balance operator, which facilitates searches in hydrostati- 

cally and geostrophically balanced directions. To avoid searches in 

the directions nearly parallel to the ones already explored on the 

previous iterations, the descent process is restarted by augmenting 

the search subspaces with the eigenvectors of the background er- 

ror covariance. It is shown that all these modifications result in a 

significant improvement in the performance of the algorithm. 

The paper is organized as follows. In the next section we briefly 

describe the basics of 4dvar methodology and its ensemble-based 

(4dEnVar) variants, outline the a4dvar method, and describe con- 

siderations in support of the proposed hybrid methodology of 

selecting the search subspaces. In Section 3 , performance of the 

a4dVar technique is analyzed using NCOM configuration in the 

Adriatic sea with a particular focus on the impact of balance con- 

straints on the forecast skill and of the new restart procedure on 

the convergence rate. Summary and discussion of the results con- 

clude the paper. 

2. Variational optimization methodologies 

We follow the terminological convention proposed by Lorenc 

(2013) , and refer to “4dEnVar” for the adjoint-free optimization 

algorithms that recover the gradient information from predeter- 

mined ensembles which are intended to capture the dominant fea- 

tures of the BEC structure. The a4dVar algorithm being tested here 

is designed to perform without a given ensemble: Instead of the 

BEC model derived from the ensemble, we use a heuristic BEC 

model, which we believe contributes to a more robust strategy 

in the face of sparse data. We then iteratively retrieve ensemble 

members (search directions) either from a model trajectory on cur- 

rent iteration, or from dominant spectral modes of the BEC matrix 

computed off-line. 

2.1. 4dVar 

In order to better illuminate connections between the 4dVar 

framework and what follows, the 4dVar approach in this section is 

formulated as a linear discrete least-squares problem constrained 

by model dynamics in a small vicinity of the model’s background 

trajectory x n 
b 
: 

J = 

1 

2 

[ 

x 0 T B 

−1 x 0 + 

N ∑ 

n =1 

( H n x 
n − d n ) T R 

−1 
n ( H n x 

n − d n ) 

] 

→ min 

x 0 
(1) 

where x n are the deviations of the model state from x n 
b 

at time t n , 

n enumerates observation times, B is the BEC matrix of x n 
b 

which 

describes the (Gaussian) statistics of the model state at n = 0 , H n 

are the model-data projection operators, d n are the discrepancies 

d ∗n − H n x n b 
between observations d ∗n and the corresponding back- 

ground model values, R n are the observation error covariances, and 

T denotes transposition. If B is rank-deficient, B 

−1 is to be un- 

derstood as a Moore–Penrose pseudoinverse. We will denote the 

dimension of the discretized model state vector x by M and the 

number of observations available at time t n by L n . 

The correction vectors, x n , are governed by the recursive rela- 

tionship 

x n = M n x 
n −1 , (2) 

where M n is the dynamical operator of the model linearized in 

the vicinity of the background trajectory x n 
b 

at the time interval 

(t n −1 , t n ) , so that 

x n = M n M n −1 . . . M 2 M 1 x 
0 . (3) 

Introduce the preconditioned variable c = B 

−1 / 2 x 0 for the control 

vector, where B 

−1 / 2 is the square root of B 

−1 , and denote the ag- 

gregated n -step propagator as M 

n ≡ M n . . . M 2 M 1 . Define (briefly) 
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