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a b s t r a c t 

Recent developments of the explicit elastic-viscous-plastic (EVP) solvers call for a new comparison with 

implicit solvers for the equations of viscous-plastic sea ice dynamics. In Arctic sea ice simulations, the 

modified and the adaptive EVP solvers, and the implicit Jacobian–free Newton–Krylov (JFNK) solver are 

compared against each other. The adaptive EVP method shows convergence rates that are generally sim- 

ilar or even better than those of the modified EVP method, but the convergence of the EVP methods is 

found to depend dramatically on the use of the replacement pressure (RP). Apparently, using the RP can 

affect the pseudo-elastic waves in the EVP methods by introducing extra non-physical oscillations so that, 

in the extreme case, convergence to the VP solution can be lost altogether. The JFNK solver also suffers 

from higher failure rates with RP implying that with RP the momentum equations are stiffer and more 

difficult to solve. For practical purposes, both EVP methods can be used efficiently with an unexpectedly 

low number of sub-cycling steps without compromising the solutions. The differences between the RP 

solutions and the NoRP solutions (when the RP is not being used) can be reduced with lower thresholds 

of viscous regularization at the cost of increasing stiffness of the equations, and hence the computational 

costs of solving them. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Sea ice covers only approximately 7% of the global ocean, but it 

is an important contributor to the surface heat budget and hence 

an important player for the Earth’s climate. It undergoes strong an- 

nual variations and it is affected by climate change about twice as 

much as globally averaged quantities ( Vancoppenolle, 2008 ). Thus, 

for any application in climate sciences, it is important to describe 

the physics of sea ice accurately. Dynamic and thermodynamic 

processes determine sea ice evolution. While thermodynamic pro- 

cesses lead to melting and growth of the ice, sea ice dynamics de- 

scribe the motion and deformation of the sea ice pack under the 

action of wind forces, ocean currents and internal ice stresses. We 

focus on the dynamics of sea ice. Most state-of-the-art numerical 

sea ice model dynamics are based on a quasi-continuum assump- 
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tion and treat sea ice as a non-Newtonian fluid with an appropri- 

ate formulation of rheology. 

The dynamical nature of sea ice is strongly non-linear ( Hibler, 

1988 ), mainly due to the strong non-linearity of the internal ice 

stresses, and encompasses a wide variety of ice types and features. 

Thus, any realistic rheology for sea ice, that is the relationship be- 

tween the internal ice stresses and the ice strain rates, leads to a 

very stiff system of non-linear equations and requires efficient so- 

lution methods with good numerical convergence properties. 

In spite of recent developments, such as the elastic-plastic- 

anisotropic ( Tsamados et al., 2013 ) or the elasto-brittle rheology 

( Girard et al., 2011; Bouillon and Rampal, 2015 ), the vast majority 

of sea ice models are based on the viscous-plastic (VP) rheology 

( Hibler, 1979 ). To our knowledge, an implicit Jacobian-free Newton- 

Krylov (JFNK) solver ( Lemieux et al., 2010; 2012; Losch et al., 2014 ) 

is one of the most efficient way to obtain accurate (machine preci- 

sion) solutions available today for the highly non-linear VP model, 

but such a solver is still computationally very expensive. In this 

manuscript we use converged JFNK solutions as a reference. 
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An alternative is to use fully explicit Elastic-Viscous-Plastic 

(EVP) schemes in which an elasticity term has been added to the 

stress equation in order to relax the restrictive time step limitation 

of VP-models. In this case, sub-cycling within each external time 

level is applied in order to damp out the artificial elastic waves. 

The idea ( Hunke and Dukowicz, 1997; Hunke, 2001 ) is now widely 

used in numerical sea ice modeling. Losch et al. (2010) ; Losch and 

Danilov (2012) and Lemieux et al. (2012) showed that the origi- 

nal attempt does not converge to the VP solution, and instead pro- 

duces different deformation fields, weaker ice and smaller viscosi- 

ties. To overcome this issue, Lemieux et al. (2012) added an inertial 

term in the momentum equations. Bouillon et al. (2013) reformu- 

lated this modified EVP (mEVP) scheme as a pseudo-time iterative 

process, which by construction should converge to the VP solution. 

Kimmritz et al. (2015) formulated a criterion that ensured (linear) 

convergence of the scheme proposed in Bouillon et al. (2013) in a 

set of experiments with simple geometry and forcing. 

In the mEVP method, two constant sub-cycling parameters α
and β determine the convergence rates of the ice stress and mo- 

mentum equations to the VP solution in the pseudo-time iteration. 

They need to be sufficiently large, typically order of several hun- 

dreds, to ensure stability of the scheme. Large sub-cycling parame- 

ters, however, also mean slower convergence rates and thus likely 

require a larger number of sub-cycling steps N EVP to reach a rea- 

sonable degree of convergence. Full convergence (i.e. the residu- 

als of the momentum and stress equations are reduced to machine 

precision) requires many thousand sub-cycles and has been found 

to be too expensive to be practical ( Kimmritz et al., 2015 ). 

Kimmritz et al. (2016) modified mEVP further and determined 

the sub-cycling parameters locally according to local stability re- 

quirements to ensure sufficient accuracy of the sub-cycling. In this 

adaptive EVP (aEVP) scheme, the sub-cycling parameters vary in 

space and time, while the number of sub-cycling steps is kept con- 

stant as in the mEVP scheme. The aEVP scheme requires large val- 

ues for the sub-cycling parameters α and β only in a few areas 

where the ice is strong and immobile ( Kimmritz et al., 2016 ). If one 

accepts poor reduction of residuals in these areas (i.e. low conver- 

gence), a smaller overall number of sub-cycling steps can be used 

without compromising accuracy almost everywhere compared to 

mEVP. 

A practical performance analysis of aEVP and mEVP with realis- 

tic ocean geometries and forcing was not a subject of Kimmritz 

et al. (2016) and is done here. We will show that for both ex- 

plicit schemes we can reproduce solutions that are nearly indis- 

tinguishable (see below) from reference solutions obtained with 

the converged JFNK solver. Tightly connected to the choice of so- 

lution techniques is the practical question of selecting the num- 

ber of sub-cycling steps N EVP . Because running the mEVP and aEVP 

schemes to full convergence is computationally very expensive, 

these schemes, in practice, will be run with incomplete conver- 

gence. We show that, in order to save computer time, N EVP can be 

reduced well below the value required by formal theoretical con- 

sideration with only very limited effect on the obtained solutions. 

Another, almost accidental, result emerges that, in contrast to 

the simple test cases in Kimmritz et al. (2016) , the convergence 

of the mEVP and aEVP schemes to the VP solution and the per- 

formance of the JFNK solver in realistic configurations are sensi- 

tive to the regularization of the internal ice strength in the viscous 

regime. Hibler (1979) limited large viscosities for very small strain 

rates in the internal stress equations by maximal values thereby 

introducing viscous behavior to the model. Bounding the viscosi- 

ties from above is almost equivalent to limiting the strain rate 

parameter � from below. In some models (including ours), this 

regularization is implemented by adding a minimum �min to �

(see Section 2 for more details) to yield a smooth regularization 

( Kreyscher et al., 20 0 0 ). Lemieux et al. (2010) implemented a nar- 

rower but still smooth transition from the plastic to the viscous 

regime by regularizing the viscosities with a hyperbolic tangent 

(tanh ) function. With regularized viscosities, ice strength gradients 

(i.e., ice thickness and concentration gradients) lead to creep of ice 

in the absence of forcing. Modifying the compressive strength in 

analogy to the regularized viscosities removes this spurious effect 

( Hibler and Ip, 1995 ). The physical effect of this so-called replace- 

ment pressure (RP) on large scale simulations was compared to 

other rheologies ( Geiger et al., 1998 ), and most, if not all, sea ice 

models use RP to avoid spurious motion. We re-evaluate the ef- 

fects of the replacement pressure in the context of numerical con- 

vergence of the mEVP and aEVP schemes. 

This article is structured as follows. Section 2 describes the sea 

ice momentum equations followed by a brief introduction of so- 

lution methods in Section 3 . Section 4 presents the numerical re- 

sults. A discussion of the results and the conclusions are given in 

Sections 5 and 6 . 

2. Description of model sea ice dynamics 

The dynamics of sea ice is governed by the sea ice momentum 

balance 

m (∂ t + f k ×) u = τa + τo − mg∇H + F , (1) 

where m is the ice (plus snow) mass per unit area, f is the Corio- 

lis parameter, k the vertical unit vector, u the ice velocity, τ a and 

τ o the wind and ocean stresses, g the acceleration due to grav- 

ity, H the sea ice surface elevation, and F = ∇ · σ the divergence 

of internal stresses in sea ice. In our implementation, τ a is in- 

dependent of the ice velocities. The ocean stress is prescribed by 

τo = −C d ρo (u − u o ) | u − u o | with ocean–ice drag C d , ocean water 

density ρo and ocean velocity u o . 

The viscous plastic constitutive law is given by 

σi j (u ) = 2 η ˙ εi j + 

[ 
(ζ − η) ̇ εkk −

P 

2 

] 
δi j (2) 

with the strain rates 

˙ εi j = 

1 

2 

(
∂ i u j + ∂ j u i 

)
(3) 

where the indices i and j denote the x and y directions. The ice 

strength P is parameterized as P = P ∗ h a e −c ∗(1 −a ) , where a is the 

ice concentration (or ice compactness) and h is the mean thick- 

ness of the grid cell; the constants P ∗ and c ∗ are set to 27500 

Nm 

−2 and 20 ( Lemieux et al., 2010 ). The bulk and shear viscosi- 

ties are given by ζ = P/ (2�) and η = ζ /e 2 , such that the stress 

states lie on an elliptic yield curve with the ratio of the semi- 

major and the semi-minor axis e = 2 . The parameter � is defined 

as � = ( ̇ ε 2 
d 

+ e −2 ˙ ε 2 s ) 
1 / 2 with divergence ˙ ε d = ˙ ε 11 + ˙ ε 22 and shear 

˙ ε s = (( ̇ ε 11 − ˙ ε 22 ) 
2 + 4 ̇ ε 2 12 ) 

1 / 2 . 

Thus, the ice is presumed to act as a plastic material, unless 

the shear and the divergence are very small. If the deformation 

parameter � is below a given threshold ( � < �min ), the ice is 

treated as a linear-viscous fluid. We implement this by replacing 

� with �reg = � + �min in the definition of ζ and η. 

In the case of small strain rates and non-uniform P , changes 

in the internal ice stress P introduce a slow creep towards equi- 

librium even if no external forces are being imposed. Hibler and 

Ip (1995) introduced the so called replacement pressure (RP) P r = 

2�ζ = P �/ (� + �min ) to remove this unphysical effect of un- 

forced spontaneous viscous creep. The constitutive law then reads 

σi j (u ) = 2 η ˙ εi j + 

[ 
(ζ − η) ̇ εkk δi j −

P r 

2 

] 
δi j . (4) 

Note, that P r is smaller than P in the viscous regime as the strain 

rates, and hence �, tend to zero. 
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