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a b s t r a c t 

Most community ocean models that use z - or s -coordinates stagger their variables in the vertical us- 

ing a Lorenz grid. Spurious short-wave baroclinic instabilities have been shown to occur on that grid by 

Arakawa and Moorthi. As the vertical resolution of the grid is improved, the wavelength of the spurious 

modes decreases and they become more and more trapped near one of the boundaries but they continue 

to grow at almost the same rate as the deep Eady/Charney modes. The spurious instabilities in the case of 

the Eady problem are here shown to be accurately reproduced by an analytical calculation which reduces 

the stability problem to a quadratic equation for their complex phase speeds. The interpretation of these 

spurious instabilities as resulting from spurious sheets of potential vorticity is revisited. A new interpre- 

tation is presented using a finite difference analogue of the Charney–Stern–Pedlosky integral constraint. 

This indicates that the spurious instabilities result from a vertical averaging of the advection of the rel- 

ative vorticity which leads to a spurious interior source term in the finite difference potential vorticity 

equation. 

Crown Copyright © 2017 Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

The vertical coordinate that an ocean model uses is generally 

recognised to be one of its primary design choices ( Griffies et al., 

20 0 0 ). Accurate representation of the advection of tracers ( Ilicak 

et al., 2012 ), the pressure gradients and the ocean bathymetry are 

all important considerations. Standard z coordinates typically rep- 

resent the bathymetry as Lego-like blocks which is only first or- 

der accurate and forces the vertical velocity (directly below tracer 

points) at the model bottom to be zero. Terrain following s - 

coordinates have difficulties representing the horizontal pressure 

gradients sufficiently accurately over steeply sloping bathymetries 

(see for example references in Chu and Fan, 2003; Berntsen, 2011 ). 

Isopycnal ( ρ) coordinates have poor resolution within the near sur- 

face mixed layers. Hybrids of z and ρ coordinates are generally 

considered to offer the most promising way forward. 

The vertical staggering of variables is also an important model 

design choice. The main community ocean models that are written 

in (some form of) height or sigma coordinates, such as MOM5.0 

( Griffies et al., 2012 ), NEMO ( Madec, 2014 ) and ROMS ( Shchepetkin 

and McWilliams, 2005 ) all use a Lorenz grid staggering. The orig- 
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inal Lorenz grid staggering ( Lorenz, 1960 ) for these vertical coor- 

dinates is depicted on the left-hand side of Fig. 1 . The density, ρ , 

(used to calculate the buoyancy), tracers, T , pressure, p , and hori- 

zontal velocities, u and v , are stored at full levels. The vertical ve- 

locities are stored at half levels and the boundaries are at levels 

1/2 and K + 1 / 2 . The modified Lorenz grid ( Arakawa, 1988 ), de- 

picted on the right-hand side of Fig. 1 , uses the same staggering 

except that the pressure is stored at the half-levels instead of at 

the full levels. If, when one uses the modified Lorenz grid, one cal- 

culates the horizontal pressure gradients at the full levels as sim- 

ple averages of the pressure gradients at the half levels, the modi- 

fied Lorenz grid is equivalent to the original Lorenz grid. Thus the 

original and modified Lorenz grids are often not distinguished and 

their properties are very similar ( Arakawa, 1988 ). The formulations 

of Simmons and Burridge (1981) , used by the ECMWF model for 

many years, and Arakawa and Suarez (1983) both use modified 

Lorenz grids ( Bell, 2003 ). 

The modified Lorenz grid is a very natural choice for a hydro- 

static ocean model. Hydrostatic balance is calculated at full levels 

and the grid stretching is chosen so that this calculation is cen- 

tred. The evolution of tracers and the incompressibility condition 

(∇ . u = 0) are also calculated at full levels using velocities that are 

naturally centred at the cell faces when the C-grid formulation is 

chosen. The pressures are available at the corners of the velocity 

cells which makes calculation of the normal pressure forces on the 
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Fig. 1. The staggering of variables used by the original (left) and modified (right) 

Lorenz grids. 

faces relatively easy. Finally the vertical velocities and the pres- 

sures are stored on the “horizontal” upper and lower boundaries. 

This is natural because the pressure at the sea surface is imposed 

by the atmosphere and the pressure on the bathymetry is explic- 

itly calculated. Using Lorenz grids with flux formulations it is pos- 

sible to conserve total energy, and the mean values and variance 

of tracers ( Lorenz, 1960 ). 

Although as just described they have many attractions, the 

Lorenz grids also have well known weaknesses. In particular the 

high vertical wavenumber normal modes are not optimal ( Tokioka, 

1978; Arakawa, 1988; Thuburn and Woollings, 2005 ). Vertical ad- 

vection of density and tracers involves a two grid point vertical av- 

erage of the vertical velocity which advects the background strati- 

fication. The horizontal pressure gradients are also two grid point 

vertical averages. This combination of averaging grossly reduces 

the equivalent depth of higher order vertical modes and allows 

a computational mode in which the density perturbation changes 

sign with height at each half grid level. 

Furthermore Arakawa and Moorthi (1988) (hereafter AM) found 

that the Lorenz grid gives spurious short-wave baroclinic instabil- 

ities near the upper and lower boundaries when it is applied to 

the Eady problem. These normal mode instabilities, as they oc- 

cur in the Eady problem for perturbations with no lateral varia- 

tion, are illustrated by the blue crosses in Fig. 2 . The growth rate 1 

is displayed as a function of the wavelength of the instability on 

grids with (a) 6, (b) 20, (c) 40 and (d) 80 levels in the vertical. 

The modes in Fig. 2 (a) with wavelengths greater than 250 km are 

the classical deep Eady/Charney modes and are accurately repro- 

duced using just a few levels. There should be no unstable modes 

at shorter wavelengths. Unfortunately there are a number of spuri- 

ous unstable modes at shorter wavelengths. The peak growth rate 

of the group of spurious waves with the shortest wavelengths is 

comparable with that of the Eady/Charney modes. As the vertical 

resolution of the grid increases, the wavelength of the spurious in- 

stabilities decreases but their peak growth rate does not dimin- 

ish. AM found these instabilities first in quasi-geostrophic equa- 

tions discretised using the Lorenz grid. They also found them in 

primitive equation models discretised using the Lorenz grid and 

showed that they have a significant detrimental impact on the sur- 

face fields. 

1 Calculated using a Brunt–Vaisala frequency such that N 2 = 10 −4 s −2 , a water 

depth H = 10 0 0 m, Coriolis parameter f = 10 −4 s −1 and a zonal velocity difference 

between the top and bottom of 1 ms −1 . 

The Charney–Phillips (C–P) grid ( Charney and Phillips, 1953 ) 

uses an alternative vertical staggering of variables in which both 

the buoyancy and the vertical velocities are stored at the half- 

levels. This grid was originally introduced to solve the quasi- 

geostrophic equations and provides a more natural discretisation 

of them than the Lorenz grid. AM showed that the spurious insta- 

bilities obtained with the Lorenz grid are absent from the quasi- 

geostrophic Eady problem discretised using the C–P grid. Bell and 

White (1988) 2 showed that the N-level quasi-geostrophic Eady 

problem on the C–P grid can be solved analytically, giving a short- 

wave cut-off and no spurious short-wave instabilities. 

Some atmospheric models (see e.g. Davies et al., 2005; Gi- 

rard et al., 2014 ) have been re-engineered to use the C–P grid 

mainly for the above reasons. These models typically use semi- 

Lagrangian rather than flux-form advection schemes. Arakawa and 

Konor (1996) and Konor and Arakawa (1997) however devised 

schemes with good conservation properties for atmospheric mod- 

els using the C–P grid and hybrid terrain following and isentropic 

coordinates. Their schemes have matching energy conversion terms 

in the thermodynamic and kinetic equations which sum to zero to 

conserve energy. They also use a flux form for the advection of 

temperature in the thermodynamic equation so that global mass 

integrals of functions of potential temperature are conserved un- 

der adiabatic processes. Although it appears that these schemes 

could be adapted for ocean models, the associated re-engineering 

of an ocean model would be a considerable undertaking. Accord- 

ingly this paper is devoted to an analysis of the spurious short- 

wave modes on the Lorenz grid and is intended to underpin an 

analysis of their likely occurrence and impact within ocean mod- 

els. We note in passing that the simplest formulation of isopycnal 

ocean models uses a C–P grid ( Bell et al., 2017 ) and that an inves- 

tigation of the staggering used by hybrid coordinate models could 

be worthwhile. 

Bell and White (1988) 3 analysed the spurious maxima and min- 

ima that occur in the (genuine) short-wave instabilities obtained 

for the Charney problem discretised using the C–P grid. They were 

able to simulate them quite well by assuming that the modes are 

trapped near one of the boundaries and that the potential vortic- 

ity gradient and details of the discretisation can be neglected ex- 

cept at the grid point closest to the critical layer. Here we apply 

these ideas to the discretization using the Lorenz grid and derive 

a quadratic equation for the phase speed of the spurious short- 

waves. The solutions of this quadratic are illustrated by the red 

plus signs in Fig. 2 . It is evident that the quadratic equation repro- 

duces the spurious short-wave modes very accurately (it does not 

of course represent the deep Eady/Charney modes at all well). 

Section 2 summarises the quasi-geostrophic equations discre- 

tised using the modified Lorenz grid and the equations obtained 

by linearising them about a laterally uniform, vertically sheared, 

zonal flow. Section 3 explains the two approximations that we use 

to represent the spurious short-wave modes, derives a quadratic 

equation for their phase speeds, and examines it in some detail 

for the special case of the Eady problem. Section 4 discusses AM’s 

interpretation of their results and suggests an improved interpre- 

tation based on a finite difference analogue of the Charney-Stern- 

Pedlosky integral constraints ( Charney and Stern, 1962; Pedlosky, 

1964 ). Section 5 summarises and presents a concluding discussion. 

The longer derivations are provided in appendices. 

2 The dispersion relation given by Bell and White (1988) , their Eq (5) , contains 

transcription errors: the factors (1 + p 2 / 4 N 

2 ) that multiply coth (θ ) and tanh ( θ ) 

should both be square rooted; in these expressions N denotes the number of levels. 
3 In Eq. (20) of Bell and White (1988) , c is misprinted as c r . 
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