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a b s t r a c t 

A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed 

and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an ideal- 

ized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are 

defined, compared and contrasted to motivate the computation and use of effective diffusivity derived 

from Lagrangian particles. The effective diffusivity is computed by first performing scalar transport on 

Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High- 

performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). The 

Lagrangian scalar transport scheme is compared against an Eulerian scalar transport scheme. Spatially- 

variable effective diffusivities are computed from resulting time-varying cumulative concentrations that 

vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity 

diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity 

estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar 

current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusiv- 

ities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based 

diffusivity computed with particle clusters. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Mesoscale eddies arise from baroclinic instability and strongly 

contribute to oceanic transport ( Volkov et al., 2008 )– especially for 

ventilation in the Southern Ocean ( Abernathey and Ferreira, 2015 ), 

biogeochemistry ( José et al., 2014; Salmon et al., 2015 ), oceanic 

heat content ( Griffies et al., 2015 ) and feedbacks to the atmo- 

sphere and climate system ( Frenger et al., 2013 ). Parameterizations 

of eddy-induced mixing are particularly important for climate sim- 

ulation ( Fox-Kemper et al., 2013; Klocker and Abernathey, 2014 ) 

and are typically developed and tested using mixing diagnosed 

from remote sensing observations, Lagrangian drifters, and model 

analysis ( Ferreira et al., 2005; Abernathey and Marshall, 2013; Cole 

et al., 2015; Bachman et al., 2015 , etc.). 

Mixing estimates can be broadly grouped into Eulerian ( Fox- 

Kemper et al., 2013 ) and Lagrangian ( LaCasce, 2008 ) approaches. 

The data available in these frames of reference has historically re- 

sulted in physically different diagnostic techniques. For example, 

scalar gradients are typically used in the Eulerian frame. Gradi- 

ents are produced from advective and diffusive contributions, i.e., 
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the scalar field evolves due to the combined action of transport 

producing stirring and small-scale mixing that eliminates resul- 

tant large scalar gradients. In contrast, Lagrangian particle tracking 

may be performed with a variety of velocity fields and background 

subgrid scale mixing parameterizations (e.g., Griffa, 1996; van Se- 

bille et al., revised, 2017 ), although without explicit dependence on 

concentration gradient. This distinction has to date precluded La- 

grangian particle tracking data from being used for diffusivity di- 

agnostics that rely on the evolution of scalar concentrations and 

gradients, e.g., the Nakamura (1996) effective diffusivity, which is 

hereafter referred to as simply “effective diffusivity”. However, es- 

timation of effective diffusivity from Lagrangian datasets would be 

useful because of the increasing capability to derive a Lagrangian 

perspective of the flow from global circulation models ( Wolfram 

et al., 2015; van Sebille et al., revised, 2017 ) and observational 

datasets, e.g., via Argo and RAFOS floats and Global Drifter Pro- 

gram data ( Roemmich et al., 2009; Rossby et al., 1986; Roemmich 

and Gilson, 2009 ). The computation of a Lagrangian-based effec- 

tive diffusivity is a natural reuse and repurposing of Lagrangian 

particle trajectories to provide alternative estimates of mixing that 

can be directly compared with standard particle-based methods. 

The effective diffusivity approach, consequently, is complementary 

to standard Lagrangian diffusivity approaches. Standard Lagrangian 
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diffusivity approaches are computed from the time rate of change 

of particle dispersion; the effective diffusivity is computed from 

the evolving cumulative concentration that accounts for mixing oc- 

curring across a variety of spatial scales by large-scale straining 

and small scale diffusion in the fluid. 

Despite these advantages to computing effective diffusivity 

from Lagrangian particle trajectories, no complete method to com- 

pute effective diffusivity from particles has been presented to date 

( Shuckburgh and Haynes, 2003 ). However, an estimated bound for 

effective diffusivity computed solely from particle separation, with- 

out use of concentration fields, has been developed ( Klocker et al., 

2012 ). A method to compute effective diffusivity from concentra- 

tion fields derived from particle data is useful because it pro- 

vides an alternative approach to quantifying fluid diffusivity us- 

ing the same particle dataset typically analyzed with standard 

dispersion-based approaches. To this end, we present a novel post- 

facto method for the evolution of a passive scalar concentration 

field using Lagrangian data. This data can subsequently be used to 

estimate concentration dependent mixing diagnostics, enabling use 

of the effective diffusivity diagnostic. 

In order to best motivate development and use of the proposed 

novel particle-based effective diffusivity diagnostic we first exam- 

ine the role of scalar mixing diagnostics relative to governing scalar 

transport processes for broader context by introducing two gen- 

eral conceptual frameworks to better understand mixing diagnos- 

tics, which are presented in Section 2 . The effective diffusivity cal- 

culation is outlined in Section 3 and its application via Lagrangian 

particles is developed in Section 4 . The idealized circumpolar cur- 

rent ( Ringler et al., 2017; Wolfram and Ringler, 2017 ) used to ex- 

plore the mixing diagnostics is described in Section 5 and the mix- 

ing diagnostics used to evaluate the effective diffusivity diagnostic 

are presented in Section 6 . Results are presented in Section 7 , dis- 

cussed in Section 8 , and general conclusions are made in Section 9 . 

2. Frameworks to quantify scalar mixing 

Scalar transport is composed of an unsteady term, an advective 

term for a velocity u , and a term parameterizing mixing for some 

background diffusivity κ, i.e., 

Dispersion-based ︷ ︸︸ ︷ 
∂c 

∂t 
+ u · ∇c = ∇ · ( κ∇c ) ︸ ︷︷ ︸ 

Transport-based 

, (1) 

where c is the scalar concentration and t is time. The scalar 

evolves from some initial condition c(t = 0) = c 0 . Mixing diag- 

nostics can be classified as 1) dispersion- and 2) transport-based 

methods. Dispersion-methods account for unsteadiness and strain. 

Transport-based methods account for mixing occurring due to un- 

steadiness; tracer filaments produced by stirring ultimately result 

in mixing via the combined action of produced tracer gradients 

and the fluid diffusivity ( Welander, 1955; Fischer et al., 1979 ). Note 

that the transport-based diagnostic fully accounts for temporally 

destroyed scalar variance due to the diffusive destruction of the 

enhanced gradients produced by advection, which is accounted 

for by κ in (1) . In contrast, particle-based diffusivities account for 

shear but are fully independent of κ . However, particle- and tracer- 

based diffusivities are typically found to agree because tracers and 

particles are both passively advected and mixing is predominantly 

due to advection in a turbulent flow that is chaotic and irreversible 

( Klocker et al., 2012; Tulloch et al., 2014; LaCasce et al., 2014 ). 

2.1. Dispersion-based methods 

Particle-based mixing metrics have been relegated to 

dispersion-based metrics because of their natural applicability 

and use within the Lagrangian reference frames. Their scientific 

use in understanding mixing is vibrant and widespread (e.g., 

LaCasce, 2008; van Sebille et al., revised, 2017 ). Diagnostically, 

dispersion-based methods are readily computed using particle- 

based methods because in their simplest implementation, particle 

tracking is accomplished by solving 

dx 

dt 
= u ( x , t ) , (2) 

where x is the position of a particle with the initial condition 

x (t = 0) = x 0 . These numerical trajectories simulate data collected 

by real-world floats. An excellent comparison of different particle- 

based approaches as applied to float-derived isopycnal diffusivities 

for the Diapycnal and Isopycnal Mixing Experiment in the South- 

ern Ocean (DIMES) is given by LaCasce et al. (2014) . 

Note that Eq. (2) cannot account for concentration-based mix- 

ing because, in isolation, it contains no information related to 

the scalar concentration c but instead tracks Lagrangian pathlines 

within the fluid. Diagnosed diffusivities are consequently derived 

from advective fluid kinematics. Conceptually, particle-based dis- 

persion methods consequently measure the capability of the fluid 

to mix out sufficiently strong and constant concentration gradients 

( Klocker et al., 2012 ), independent of the particular mixing of a 

scalar. This estimate may be reasonably close to the diffusivity en- 

countered for scalar transport under reasonable initial conditions, 

as evident by near equivalence of different mixing metrics mea- 

sured for particular flows ( Klocker et al., 2012; Abernathey et al., 

2013 ) because the flow is chaotic and turbulent, which effectively 

permits an advection-dominated description of the mixing ( Klocker 

et al., 2012; Tulloch et al., 2014; LaCasce et al., 2014 ). 

2.2. Transport-based methods 

In contrast, transport-based methods use the evolution of a 

scalar from some initial concentration distribution to make in- 

ferences about mixing, potentially including diagnosis of the full 

diffusivity tensor and quantification of irreversible mixing. At the 

largest spatial scale, the global diffusivity may be computed from 

a global concentration variance budget ( Marshall et al., 2006 ). At 

smaller spatial scales, mixing may be quantified via computation of 

scalar moments for each tracer ( Aris, 1956; Holleman et al., 2013 ). 

Additionally, a least squares fit using multiple tracers can be used 

to directly compute the mixing from a Reynold’s stress decompo- 

sition via spatial and/or temporal averaging operations · and as- 

sociated decomposed eddy · ′ components ( Bachman et al., 2015 ), 

yielding 

u 

′ c ′ = −R ∇ c . (3) 

R includes both advective and diffusive properties corresponding 

to its antisymmetric and symmetric components ( Garrett, 2006; 

Fox-Kemper et al., 2013 ). However, R neglects the time-varying 

nature of mixing; some “mixing” processes in (3) may be re- 

versible and may be viewed in a time-averaged sense as diffusivity 

noise. But, the form of (3) is more amenable to parameterization 

schemes where this variability is unimportant, e.g., Redi (1982) and 

Gent and Mcwilliams (1990) parameterizations for the symmetric 

and antisymmetric components of R , respectively. 

Alternatively, methods such as the effective diffusivity and the 

local Osborn and Cox (1972) diffusivity quantify irreversible mix- 

ing occurring due to flux of tracer normal to tracer contours. Note 

that at shorter times than the decorrelation timescale, diffusivity 

estimates are dependent upon the initial choice of scalar concen- 

tration. Osborn and Cox (1972) diffusivity, in contrast to effective 

diffusivity, computes the irreversible mixing occurring at a point 

as opposed to across a tracer contour within a tracer-based coor- 

dinate system. However, this local mixing measure requires advec- 

tion of tracer variance to be small relative to variance dissipation 
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