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a b s t r a c t 

In anticipation of relaxing the hydrostatic assumption in a sigma coordinates primitive equations ocean 

model, we show how a projection method can be designed with the use of a compact symmetric 15- 

point stencil for the Poisson equation. This is achieved by recognizing that, owing the non-orthogonality 

of the grid, the velocity has a contravariant and covariant set of components. The two sets play a dif- 

ferent role in the primitive equations: the contravariant components enter the definition of the model 

fluxes, whereas the covariant components experience the forces and in particular the pressure gradient. 

By treating these two sets separately, the discretized gradient and divergence operators are simple finite 

differences. The two sets of components are related via a linear transformation, the metric tensor, which 

is entirely determined by the kinetic energy. We show how the spatial discretization of the kinetic energy 

fully controls the Poisson equation discretization, including its boundary conditions. The discretization of 

the Poisson equation is shown to converge at second order and to behave as well or better than alter- 

native methods. This approach is a prerequisite to implement later an efficient Poisson solver, such as a 

multigrid algorithm. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

With the growing interest on processes at submesoscale 

( Nikurashin et al., 2013; Molemaker et al., 2015; Callies et al., 

2015; Gula et al., 2015 ) the ocean modelling community needs 

non-hydrostatic (NH) ocean circulation models. This will allow to 

investigate in realistic contexts the full range of internal waves, 

symmetric instability, convection processes, etc. and to bridge the 

gap with LES ( Sullivan et al., 1994 ). A few circulation models 

do already handle the non-hydrostatic physics properly: MITgcm 

( Marshall et al., 1997 ), POM ( Kanarska and Maderich, 2003 ), ROMS 

( Kanarska et al., 2007 ), Symphonie ( Auclair et al., 2011 ), GETM 

( Klingbeil and Burchard, 2013 ). However, NH simulations on large 

grids, in realistic regional configurations are still awaited. It is 

timely to resolve this. The reason for the NH circulation models 

rarity is that relaxing the hydrostatic assumption, while keeping 

the Boussinesq assumption, is not straightforward. At least two 

levels of difficulties must be faced: i) the requirement to solve 

a 3D Poisson equation for the pressure at each time step, made 
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more complex in the case of sigma coordinates by ii) the non- 

orthogonality of the grid. This second difficulty is absent in z - 

coordinates models. Incidentally, for models with a time-splitting 

on the free surface, a third difficulty is to properly handle the 

coupling between the non-hydrostatic pressure and surface waves 

( Auclair et al., 2011 ). 

The first problem amounts to solving a linear system of equa- 

tions with as many equations as number of grid points. For the in- 

tended purpose of high-resolution turbulent simulations we have 

in mind grids as large as 20 0 0 × 20 0 0 × 10 0 0 grid points, corre- 

sponding to N ∼ 10 9 coupled equations. It is a classical well known 

problem of High Performance Computing (HPC). A possible way 

to circumvent the problem consists in relaxing the incompressibil- 

ity constraint, which forces to cope with sound waves. The pres- 

sure can then be computed by integrating in time the compressible 

physics using a time-splitting technique. In the atmospheric com- 

munity, this is the approach implemented in WRF ( Skamarock and 

Klemp, 2008 ). In the ocean the ratio between advective speed and 

the phase speed of sound waves is much more unfavorable, lead- 

ing to a required time split that is two orders of magnitude larger. 

An approach that uses artificial impressibility to slow down the 

phase speed of sound waves and hence reduce the required ra- 

tio in split time steps is currently under development as part of 

http://dx.doi.org/10.1016/j.ocemod.2017.09.001 
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the French regional ocean modeling project CROCO, but not avail- 

able in a published manuscript (Francis Auclair, private communi- 

cation). Klingbeil and Burchard (2013) follow a similar approach 

where a time-splitting on the baroclinic time step is introduced to 

achieve the incompressibility constraint. These methods trade the 

price of solving the Poisson problem with accepting a non-strict 

divergence-freeness of the flow. 

Otherwise, the numerical implementation necessarily requires 

the use of an iterative solver to solve the Poisson equation. Many 

different numerical methods exist but only a few of them suc- 

ceed at maintaining a uniform convergence rate for large grids. 

This is the case of the multigrid technique whose computational 

cost scales as N log N , which is considered to be the optimal scal- 

ing. It has been shown recently to perform very well with large 

grids on massively parallel cluster, up to 10 10 degrees of free- 

dom and 65,536 cores, in the context of atmospheric modelling 

( Müller and Scheichl, 2014 ). To get the best performances, the sten- 

cil for the Poisson equation needs to be symmetric and compact. 

These two properties reduce the number of floating point opera- 

tions, the amount of data storage and the data movement between 

the cpu and the memory. In modern computer architecture, data 

movement is the bottleneck for high performances ( Williams et al., 

2009 ). Any numerical method that reduce data transfer is worth 

it. In the present study, the compactness means a 15-point sten- 

cil, compared to the usual 25-point one ( Auclair et al., 2011 ). The 

symmetry allows to almost halve the number of coefficients for the 

matrix since only 8 coefficients are needed for a 15-point sten- 

cil (one main and 7 lower diagonals). Overall the present matrix 

offers a reduction by a factor 3 on the number of matrix coef- 

ficients compared to existing methods. In anticipation of imple- 

menting such solution into a sigma-coordinates model we present 

here a way to achieve compactness and symmetry for the Poisson 

equation. 

The second problem is due to the non-orthogonality of the grid. 

One consequence is that the horizontal pressure gradient cannot 

be computed as a simple finite difference between two adjacent 

horizontal grid cells. Chain rule and vertical interpolation should 

be used ( Shchepetkin and McWilliams, 2003 ) resulting in wide 

stencils for the gradient operator. The divergence of vertical flux 

behaves similarly because the vertical flux involves horizontal ve- 

locities. Since the Poisson equation arises as the successive ac- 

tion of the gradient and the divergence, the resulting stencil for 

the Poisson equation is tall in the vertical, involving overall 25 

points ( Auclair et al., 2011 ). The Poisson equation couples points 

over 5 levels in the vertical and 3 in both horizontal directions. 

The stencil can be made symmetric by defining the gradient as mi- 

nus the adjoint of the divergence. This is the so-called compatible 

discretization ( Taylor and Fournier, 2010 ). It is also possible to dis- 

cretize the Poisson matrix directly and independently of how the 

gradient and the divergence are discretized ( Kanarska et al., 2007 ). 

In that case, the stencil is compact with 15 points. The major draw- 

back of such a method is that it fails at maintaining the compati- 

bility between operators which impacts the energy conservation. 

In this paper we show how the two problems can be solved 

jointly. The first step is to recognize that because of the non- 

orthogonality of the coordinates system, the velocity has two sets 

of components: a contravariant one and a covariant one. The two 

sets are related via a linear transformation, the metric tensor, 

which is invertible. The metric tensor is completely determined 

by the kinetic energy. The two sets of components play a differ- 

ent role and must be treated distinguishly. The contravariant com- 

ponents appear in the definition of fluxes (volume, tracer, mo- 

mentum), whereas the covariant components appear in the force 

budget. Using the framework of the discrete differential geometry 

( Desbrun et al., 2008 ) we show that the contravariant components 

must be discretized at the cell faces of the primal grid whereas 

the covariant components should be discretized at the edges of 

the dual grid (the lines joining the cell centers). Such discretiza- 

tion is in line with the C-grid staggering, and the finite volume dis- 

cretization for tracers. It also completely adheres to Thuburn and 

Cotter (2012) way to discretize shallow water equations on non- 

orthogonal grids. The divergence and the gradient operators have 

then trivial discretization: they are simple finite differences. In 

the spirit of Molemaker et al. (2005) and Dubos et al. (2015) we 

then deduce the discrete Poisson equation directly from the dis- 

cretized kinetic energy and the discretized divergence operator. 

The price of this approach is to prognose either the covariant 

components or the contravariant ones. For sake of completeness 

we present the momentum equations written for the covariant 

components in both vector-invariant form and in flux-form. The 

vector-invariant form is similar to a standard Cartesian formulation 

whereas the flux-form involves additional pseudo-force terms. Up 

to now, sigma-coordinates models prognose Cartesian components 

of the velocity, namely horizontal and vertical, which are a blend 

of contravariant and covariant components. This causes unneces- 

sary wide stencil for the divergence and the gradient and finally a 

too wide stencil for the Poisson equation. By expliciting and clar- 

ifying the subtleties induced by non-orthogonal coordinates, this 

paper offers a roadmap for an efficient implementation of a pro- 

jection method. 

The paper is organized as follows. We define in Section 2 the 

contra- and covariant sets of components for the velocity and 

present the model continuous equations. In Section 3 , we present 

the spatial discretization of the variables, the divergence and the 

discretized kinetic energy and derive all the other discretizations 

from them. In Section 4 we discuss the properties of the discretiza- 

tion on a test-case. A conclusion is given in Section 5 . 

2. Formulation 

As stated in the introduction, the objective of this study is to 

provide a discrete Poisson operator that can be solved efficiently 

by iterative methods on very large grids. In this section, we will in- 

troduce a dual representation of the velocities on the grid, which 

will prove to be advantageous in arriving at a compact, symmet- 

ric, discrete operator. Subsequently, we will present the governing 

equations of motion for these prognostic variables. 

2.1. Flux and momentum 

In orthogonal curvilinear coordinates ( ξ , η, z ), the velocity 

of a fluid parcel is naturally expressed as u = h ξ
˙ ξ i + h η ˙ η j + ˙ z k , 

where the dot denotes the Lagrangian time derivative, i , j , k are 

the unit vectors in horizontal and vertical directions, and ( h ξ , h η) 

are the Lamé coefficients in the horizontal directions. We define 

(u c , v c , w c ) = (h ξ
˙ ξ , h η ˙ η, ˙ z ) and denote them, with a slight abuse 

of usage, the Cartesian velocity components. The terrain following 

sigma coordinates are ( ξ , η, σ ), for which the vertical position is 

z ( ξ , η, σ , t ). The time dependency in z is driven by the sea surface 

height variations and yields a breathing grid. Using the chain rule, 

this causes 

u = u c i + v c j + (u c s ξ + v c s η + h σ ˙ σ + ∂ t z) k , (1) 

where 

s ξ = 

1 

h ξ

∂z 

∂ξ
, s η = 

1 

h η

∂z 

∂η
(2) 

are the slopes of σ -surfaces, h σ is the Lamé coefficient in the ver- 

tical direction and ∂ t z = ∂ z/∂ t accounts for the breathing of grid. 

We denote (U, V, W ) = (h ξ
˙ ξ , h η ˙ η, h σ ˙ σ ) the sigma coordinate ve- 

locity components. They are related to the Cartesian velocity com- 

ponents by 

u c = U 
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