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a b s t r a c t 

Ocean circulation models employ ‘turbulent’ viscosity and diffusivity to represent unresolved sub- 

gridscale processes such as breaking internal waves. Computational power has now advanced sufficiently 

to permit regional ocean circulation models to be run at sufficiently high (100 m–1 km) horizontal reso- 

lution to resolve a significant part of the internal wave spectrum. Here we develop theory for boundary 

generated internal waves in such models, and in particular, where the waves dissipate their energy. We 

focus specifically on the steady lee wave problem where stationary waves are generated by a large-scale 

flow acting across ocean bottom topography. We generalise the energy flux expressions of [Bell, T., 1975. 

Topographically generated internal waves in the open ocean. J. Geophys. Res. 80, 320–327] to include 

the effect of arbitrary viscosity and diffusivity. Applying these results for realistic parameter choices we 

show that in the present generation of models with O(1) m 

2 s −1 horizontal viscosity/diffusivity boundary- 

generated waves will inevitably dissipate the majority of their energy within a few hundred metres of the 

boundary. This dissipation is a direct consequence of the artificially high viscosity/diffusivity, which is not 

always physically justified in numerical models. Hence, caution is necessary in comparing model results 

to ocean observations. Our theory further predicts that O( 10 −2 ) m 

2 s −1 horizontal and O( 10 −4 ) m 

2 s −1 

vertical viscosity/diffusivity is required to achieve a qualitatively inviscid representation of internal wave 

dynamics in ocean models. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Internal waves are an important mechanism for vertical and 

downscale transfer of energy in the ocean. Internal waves can 

transport energy from the upper and lower boundary of the ocean 

(where much of the energy is injected) to the ocean interior, where 

wave breaking and other nonlinear processes can lead to turbulent 

mixing ( Waterhouse et al., 2014 ). Furthermore, they are amongst 

the larger scales of ‘unbalanced’ flow, and can therefore provide 

a conduit from large-scale ‘balanced’ flow to the small-scale tur- 

bulence where dissipation occurs ( Vanneste, 2013 ). Internal waves 

are generated by surface wind stresses ( Alford et al., 2016; Jouanno 

et al., 2016 ), tidal interactions with bathymetry (e.g. St Laurent and 

Garrett, 2002 ), geostrophic flows over rough topography on the sea 

floor ( Nikurashin and Ferrari, 2010 ), and small-scale unbalanced 

flow at the ocean surface including submesoscale eddies, fronts 

and filaments (e.g. Danioux et al., 2012; Nagai et al., 2015; Shake- 

speare and Taylor, 2016 ). 
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Only recently have computational capabilities expanded suffi- 

ciently to permit regional ocean circulation models to be run at 

sufficiently high (100 m–1 km) horizontal resolution to resolve a 

significant portion of the internal wave spectrum ( Nikurashin et al., 

2013; Nagai et al., 2015; Rosso et al., 2015 ). In their 200 m reso- 

lution model, Nikurashin et al. (2013) find that the resolved waves 

generated via geostrophic flow over topography (lee waves) dissi- 

pate 80% of their energy in the water column directly above the 

topography. They extrapolate this result to the global ocean to 

suggest that the resolved waves with scales exceeding 1 km pro- 

vide a first-order contribution to turbulent mixing directly above 

topography, thereby sustaining the ocean overturning circulation. 

Enhanced dissipation above rough topography is consistent with 

ocean observations ( Waterhouse et al., 2014 ). However, observa- 

tional estimates suggest that lee waves only dissipate 2–20% of 

their energy near topography ( Waterman et al., 2013 ), much less 

than the 80% predicted from the Nikurashin et al. (2013) numeri- 

cal model. 

As with all large-scale ocean models, the subgrid-scale turbu- 

lence in wave-resolving numerical models must be parameterised, 

typically using Laplacian (or higher order) horizontal diffusivities 

http://dx.doi.org/10.1016/j.ocemod.2017.03.006 

1463-5003/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.ocemod.2017.03.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ocemod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocemod.2017.03.006&domain=pdf
mailto:callum.shakespeare@anu.edu.au
http://dx.doi.org/10.1016/j.ocemod.2017.03.006


C.J. Shakespeare, A.McC. Hogg / Ocean Modelling 113 (2017) 22–29 23 

and/or viscosities. The fact that the horizontal gridscale (100 m–

1 km) is much larger than the vertical (1–20 m) implies that the 

corresponding viscosity/diffusivity will be that much larger: typical 

values of Laplacian horizontal diffusivities and/or viscosities em- 

ployed in these high resolution models (e.g. Nikurashin et al., 2013; 

Nagai et al., 2015; Rosso et al., 2015 ) are of O(1) m 

2 s −1 through- 

out the depth of the ocean. In comparison, values for vertical vis- 

cosity/diffusivity are typically of O(10 −3 − 10 −5 ) m 

2 s −1 . To some 

extent these parameterisations are intended to represent the effect 

of internal waves breaking and driving mixing of density and mo- 

mentum in the ocean interior ( Polzin, 2010; Polzin and Lvov, 2011 ). 

This situation presents a problem since we are parameterising the 

effect of waves while partially resolving waves, and thus any ef- 

fect the parameterisation has on the waves is potentially a spuri- 

ous one. Here we investigate this effect and what can be done to 

minimise or eliminate it. It it widely acknowledged that numerical 

ocean models should be run with the smallest possible turbulent 

viscosities and diffusivities 1 , except in regions of the ocean where 

larger values can be physically justified. However, values consid- 

ered ‘small’ change with model resolution as smaller-scale physics 

is explicitly represented— here we quantify what values are ‘small 

enough’ in the context of internal waves in wave-resolving models, 

and the constraint this places on model resolution. 

The ‘fluid’ in the numerical models described above (which we 

will term the ‘model fluid’) has strongly non-isotropic behaviour, 

with order-of-magnitude different horizontal and vertical viscos- 

ity/diffusivity. As will be shown here, these parameter choices re- 

sult in the energy loss from the wave field in large-scale nu- 

merical models often being dominated by the horizontal viscos- 

ity/diffusivity for much of the internal wave spectrum (excluding 

near-inertial waves). Most of these models also use the hydro- 

static version of the Boussinesq equations, so we will only con- 

sider hydrostatic internal waves. Thus, our objective here is formu- 

late hydrostatic linear internal wave theory to describe the energy 

flux associated with boundary-sourced internal waves in the pres- 

ence of arbitrary viscosity/diffusivity. In particular, we will extend 

the classic steady lee wave energy flux expression of Bell (1975) , 

which has been recently used to estimate lee wave generation in 

the global ocean (e.g. Nikurashin et al., 2014 ), to include viscous 

and diffusive effects. We describe this as the ‘viscous lee wave 

problem’. 

Viscous and diabatic internal waves have been investigated 

theoretically by previous authors, predominantly in the atmo- 

spheric context. Pitteway and Hines (1963) examined the decay of 

waves in upper atmosphere for isotropic viscosity and/or diffusiv- 

ity. Yanowitch (1967) showed that finite viscosity can act to reflect 

upward-propagating waves in the atmosphere. These studies con- 

sidered non-Boussinesq fluids and exponential density profiles ap- 

propriate to the atmosphere. Hazel (1967) , following Booker and 

Bretherton (1967) , showed that the reflection of waves at criti- 

cal levels is unchanged by the presence of viscosity, using a sim- 

ilar approach to that taken in the present work of linearising 

about a background flow state. However, as noted above, here 

we focus specifically on ocean models with non-isotropic viscos- 

ity/diffusivity and apply our results to the lee wave problem. 

2. Linear wave theory 

Here we investigate the dynamics of internal waves generated 

at a boundary in a ‘model fluid’ with arbitrary viscosity and/or dif- 

1 Here, ‘smallest possible’ refers to the value of explicit viscosity/diffusivity that 

ensures the flow field is smoothly represented on the model grid at any given loca- 

tion, and therefore depends on both resolution and flow properties. Values smaller 

than this lead to errors in the numerical advection scheme due to the poor rep- 

resentation of flow gradients (sometimes called ‘numerical’ diffusion/viscosity) and 

usually result in the model not being energetically consistent. 

fusivity using linear theory. The hydrostatic Boussinesq equations 

with uniform Laplacian diffusivity (horizontal κh ; vertical κv ) and 

viscosity (horizontal A h ; vertical A v ) on an f -plane, linearised about 

a state with spatially uniform and time-independent background 

flow, U = (U, V, 0) , and spatially uniform and time-independent 

stratification, N 

2 , are 

∂u 

∂t 
− f v + U · ∇ h u = − 1 

ρ0 

∂ p 

∂x 
+ A h ∇ 

2 
h u + A v 

∂ 2 u 

∂z 2 
, (1a) 

∂v 
∂t 

+ f u + U · ∇ h v = − 1 

ρ0 

∂ p 

∂y 
+ A h ∇ 

2 
h v + A v 

∂ 2 v 
∂z 2 

, (1b) 

0 = − 1 

ρ0 

∂ p 

∂z 
+ b, (1c) 

∂b 

∂t 
+ wN 

2 + U · ∇ h b = κh ∇ 

2 
h b + κv 

∂ 2 b 

∂z 2 
, (1d) 

0 = 

∂u 

∂x 
+ 

∂v 
∂y 

+ 

∂w 

∂z 
, (1e) 

where ( u, v, w ) are the velocities in the ( x, y, z ) Cartesian coordi- 

nate directions, p is the pressure, b = −g(ρ − ρ0 ) /ρ0 the buoyancy, 

f the Coriolis parameter, and ρ0 the reference density. We seek so- 

lutions to (1) with the form of plane waves moving with the back- 

ground flow, 

b = ̂

 b (k, l, ω, z) exp ( ı (k (x − Ut) + l(y − V t) + ωt) ) 

= ̂

 b (k, l, �, z) exp ( ı (kx + ly + �t) ) , (2) 

where ı = 

√ −1 , k, l are the x and y wavenumbers, ω the La- 

grangian frequency, and � = ω − (kU + lV ) the Doppler shifted 

(Eulerian) frequency. Our objective here is to determine the ver- 

tical structure function, ̂ b (k, l, ω, z) , which describes the vertical 

amplitude profile of a wave, given the scale and frequency. Sim- 

ilar expressions to (2) apply for the velocity and pressure fields. 

Substituting these expressions into (1) , and a little manipulation 

to eliminate the pressure, yields a system of equations, (
I 
∂ 2 

∂z 2 
+ A 

)
· S = 0 , (3a) 

where I is the identity matrix, 

S = 

⎡ ⎢ ⎢ ⎢ ⎣ 

̂ ∂ z u 0 ̂ ∂ z v 0 ̂ w 0 ̂ b 0 

⎤ ⎥ ⎥ ⎥ ⎦ 

(3b) 

and 

A = ⎡ ⎢ ⎣ 

ıω/A v − K 

2 A h /A v f/A v 0 −ık/A v 
− f/A v ıω/A v − K 

2 A h /A v 0 −ıl/A v 
ık ıl 0 0 

0 0 −N 

2 /κv ıω/κv − K 

2 κh /κv 

⎤ ⎥ ⎦ 

(3c) 

where K 

2 = k 2 + l 2 . Solutions to the system of Eq. (3) are given by 

S = S (z = 0) e γ z , (A + γ 2 I) · S (z = 0) = 0 , (4) 

for complex vertical wavenumber γ (eigenvalue γ 2 ). For non- 

trivial solutions we must have 

0 = det (A + γ 2 I) 

= γ 2 ( f 2 + (A h K 

2 − A v γ
2 − ıω) 2 )(−K 

2 κh + κv γ
2 + ıω) 

+ K 

2 N 

2 (A h K 

2 − A v γ
2 − iω) . (5) 
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