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a b s t r a c t 

We present a Newton–Krylov based solver to efficiently spin up tracers in an online ocean model. We 

demonstrate that the solver converges, that tracer simulations initialized with the solution from the 

solver have small drift, and that the solver takes orders of magnitude less computational time than the 

brute force spin-up approach. To demonstrate the application of the solver, we use it to efficiently spin 

up the tracer ideal age with respect to the circulation from different time intervals in a long physics run. 

We then evaluate how the spun-up ideal age tracer depends on the duration of the physics run, i.e., on 

how equilibrated the circulation is. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Analysis of ocean tracer simulations is complicated by the pres- 

ence of drift (i.e., the simulated ocean tracers are not in balance 

with their boundary conditions and the ocean circulation). Drift 

in simulated tracers adds uncertainty to comparisons with ob- 

servations and complicates the interpretation of tracer processes 

(e.g., source-sink terms and couplings between tracers), particu- 

larly when these processes are non-linear. Tracer drift also compli- 

cates the evaluation of tracer’s response to transient forcing (e.g., 

rising atmospheric CO 2 or anthropogenic nutrient inputs), because 

the tracer’s response can depend on the state of the tracer itself. 

Therefore, the capacity to generate tracer distributions in balance 

with their boundary conditions and the ocean circulation is advan- 

tageous. Because ventilation of the deep ocean takes in excess of 

10 0 0 years ( Holzer and Primeau, 2010; DeVries and Primeau, 2011; 

Khatiwala et al., 2012 ), brute force tracer spin-up, running the trac- 

ers forward in time until this balance is reached, takes thousands 

of simulated years (i.e., multiple ventilation timescales). Running 

ocean models at a resolution typical of contemporary climate mod- 

els (about 1 ° or O(10 6 ) grid points) for this duration is computa- 

tionally expensive, and often prohibitive. 

Previous effort s have overcome this hurdle, in the context of 

offline tracer transport, by using Newton–Krylov based solvers to 

directly solve for the spun-up tracer distributions ( Li and Primeau, 

20 08; Khatiwala, 20 08; Bardin et al., 2014 ). One approach to spin 

up tracers for use in an online ocean model is to use a Newton–

Krylov solver in conjunction with an offline tracer transport model, 
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where the offline model is using the circulation of the online 

model. A disadvantage of this approach is that offline models typ- 

ically use approximations in their representation of the online 

model’s circulation (e.g., using temporally averaged circulation op- 

erators), and it is unclear how these approximations affect the 

spun-up tracer distributions. While ( Bardin et al., 2016 ) shows that 

the impact of these approximations on spun-up ideal age is small 

if the circulation is sampled frequently enough, the significance of 

the impact likely depends on the timescales of the processes af- 

fecting the tracers being spun up. Another disadvantage of this ap- 

proach is that in practice, the tracers are either implemented sepa- 

rately in both the offline and online models, or the tracers are im- 

plemented in a way that is compatible with both models. For com- 

plex tracers, such as ecosystem models, the burden of having mul- 

tiple tracer implementations, or of implementing the tracers com- 

patibly with both models, can be excessive. Furthermore, it would 

not be easy to extend this approach to spinning up the active trac- 

ers of an ocean model. Because of these disadvantages, it is desir- 

able to have a fast spin-up technique that is directly applicable to 

online ocean tracer simulations. 

We present here the successful application of a Newton–Krylov 

based solver to efficiently spin up passive tracers in online ocean 

tracer simulations. We demonstrate this tool by efficiently spinning 

up the tracer ideal age ( Thiele and Sarmiento, 1990 ) with respect 

to the circulation from different time intervals in a long physics 

run. We further evaluate how the spun-up ideal age tracer depends 

on the duration of the physics run, i.e., on how equilibrated the 

circulation is. 

We describe, in Section 2 , our formulation of the spin-up prob- 

lem and the Newton–Krylov solver that we have developed to 

solve it, deferring some of the technical implementation details 
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into appendices. We also describe in that section the computa- 

tional experiments in which we use the solver. We present the 

results of these experiments in Section 3 , discuss these results in 

Section 4 , and give some concluding remarks in Section 5 . 

2. Methods 

We first state the definition that we use of the spin-up prob- 

lem for generic ocean tracers, mostly following the notation of 

Khatiwala (2008) . Tracer concentrations, denoted by c ( t ), evolve in 

time according to the equation 

d c 

d t 
= f (t, c ) , (1) 

where f denotes the sum of mixing, advective, and source-sink ten- 

dencies of the tracers. In practice, c is a vector whose component 

values correspond to the ocean model’s spatial discretization of 

tracers (e.g., grid cell means or spectral element decomposition co- 

efficients). We use bold to denote vectors, such as c , matrices, and 

other vector-valued operators. The solution of Eq. (1) , with tracer 

concentrations at time t 0 specified by c ( t 0 ), can be written as 

c (t) = �( t, t 0 , c (t 0 ) ) . (2) 

The spin-up problem is that for a given t 0 and time duration 

�t , we seek initial tracer concentrations c ( t 0 ) that leads to c (t 0 + 

�t) = c (t 0 ) . That is, we seek a solution c ( t 0 ) of the equation 

G ( c (t 0 ) ) ≡ �( t 0 + �t, t 0 , c (t 0 ) ) − c (t 0 ) = 0 . (3) 

Such a solution is said to be spun-up with respect to the ocean 

model’s circulation over the time interval t 0 to t 0 + �t . �t is 

typically an integer number of years. We refer the reader to 

Section 4.1 for some practical implications of this formal definition 

of the tracer spin-up problem. 

The brute force approach to generating a spun-up solution to 

Eq. (3) is to run the tracers forward in time repeatedly from t 0 to 

t 0 + �t, initializing the tracer concentrations at t 0 from the previ- 

ous values at t 0 + �t . Mathematically, this is equivalent to using 

fixed-point iterations on Eq. (2) to solve Eq. (3) , 

c n +1 = �( t 0 + �t, t 0 , c n ) . (4) 

We note that repeatedly performing fixed-point iterations is equiv- 

alent to running the tracers forward in time from t 0 to t = ∞ , if 

one repeats periodically the model’s circulation and physical state 

variables forward in time from the interval t 0 to t 0 + �t . As stated 

in Section 1 , it takes thousands of model years to spin up tracers 

with such an approach, which is computationally expensive. 

A different approach to find spun-up tracer concentrations is to 

apply Newton’s method to Eq. (3) . Newton’s method is an iterative 

method to approximate the solution of a system of equations that 

proceeds as follows. Given the current iterate, c n , G ( c ) is approxi- 

mated with a linearization in the neighborhood of c n , 

G ( c n + δc n ) ≈ G ( c n ) + J n δc n , (5) 

δc n is found such that the right-hand side of Eq. (5) is zero, 

J n δc n = −G ( c n ) , (6) 

and the next Newton iterate is set to 

c n +1 = c n + δc n . (7) 

In these equations, J n is the Jacobian of G evaluated at c n , 

J n ≡ ∂ G 

∂ c 

∣∣∣∣
c n 

. (8) 

It represents how increments, δc , to the tracer concentrations, 

c , lead to changes in G , as they evolve over the time interval 

t 0 to t 0 + �t . Because the duration of the interval, �t , spans 

many model time steps (i.e., we are not considering instantaneous 

changes), J n is not sparse, making it difficult to compute all of its 

entries. This precludes using a direct method to solve Eq. (6) . We 

instead use an iterative method. 

Krylov subspace methods ( Saad, 2003 ) are a class of iterative 

methods for solving A x = b that work by minimizing the residual 

r = b − A x over vectors from a Krylov subspace 

K m 

( A , b ) = span 

{
b , A b , A 

2 b , . . . , A 

m −1 b 

}
. (9) 

A notable feature of these methods is that they only utilize the 

matrix A through matrix-vector multiplications with A , they do not 

directly access the individual entries of A . Because of this feature, 

they are well suited for solving A x = b when the entries of A are 

not available, provided that one can compute matrix-vector multi- 

plications with A . Matrix-vector multiplications with our Jacobian 

matrix J n can be approximated with the finite difference approxi- 

mation 

J n δc ≈ ( G ( c n + σδc ) − G ( c n ) ) /σ, (10) 

for a suitably chosen scalar σ . For our G , the right-hand side of 

Eq. (10) can be evaluated with two model runs, one to evaluate 

each G term, or a single model run if G ( c n ) has been previously 

computed. Krylov subspace methods are thus a feasible way to 

solve Eq. (6) . The particular Krylov subspace method that we use 

is GMRES ( Saad and Schultz, 1986 ), following the presentation in 

Saad (2003) . 

Summarizing, we use Newton’s method, Eqs. (6) and (7) , to 

solve Eq. (3) . The increment in Newton’s method, δc n , is obtained 

by using GMRES to solve Eq. (6) . The matrix-vector multiplications 

required by GMRES are evaluated using Eq. (10) . There are a num- 

ber of technical details involved in implementing this Newton–

Krylov solver. In particular, the batch computing environment that 

our ocean model is run within leads to some complications. We 

refer the reader to Appendix A for these technical details. 

2.1. Krylov preconditioner 

Following Li and Primeau (2008) and Khatiwala (2008) , we ap- 

ply a preconditioner to Eq. (6) to improve the convergence rate of 

the Krylov solver. We use a left preconditioner, yielding 

P n J n δc n = −P n G ( c n ) , (11) 

where P n is the preconditioner matrix. In order to improve the 

convergence rate of the Krylov solver, P n should approximate the 

inverse of J n . With the introduction of a left preconditioner into 

the Krylov solver, matrix operations using the matrix J n , such as 

matrix-vector multiplications, are replaced with matrix operations 

using the matrix P n J n . These latter matrix-vector multiplications 

are implemented by first evaluating a matrix-vector multiplication 

using J n , evaluated using Eq. (10) , and then multiplying the result 

by P n . In order to be of practical benefit, computing matrix-vector 

multiplications with P n needs to be computationally feasible. 

We use the same type of conditioner that ( Li and 

Primeau, 2008 ) and ( Khatiwala, 2008 ) both use. Following the 

derivation in Khatiwala (2008) , we construct P n by introducing 
˜ �, an approximation to the ocean model’s evaluation of �, and 

set P n to be inverse of ˜ J , the Jacobian that corresponds to ˜ �. As 

shown by Khatiwala (2008) , a choice for ˜ � that works well is to 

replace the ocean model’s time stepping with a single backward 

Euler time step over the time interval t 0 to t 0 + �t, 

˜ �K − c (t 0 ) = �t f (t 0 + �t, ˜ �K ) , (12) 

where the K subscript denotes that this is the approximation of 

Khatiwala (2008) . In order to better capture the mean of the ocean 

model’s circulation, we replace the instantaneous mixing and ad- 

vective operators that effectively appear on the right-hand side 
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