Contents lists available at ScienceDirect

Ocean Modelling

journal homepage: www.elsevier.com/locate/ocemod

Virtual Special Issue COWCLIP

Generation and validation of the Chilean Wave Atlas database

José Beyá^{a,*}, Marco Álvarez^b, Ariel Gallardo^{c,d}, Héctor Hidalgo^{e,f}, Patricio Winckler^g

^a Escuela de Ingeniería Civil Oceánica, Universidad de Valparaíso, Av. Brasil 1786, Valparaíso, 2362844 Chile

^b The Chilean Wave Atlas Project, Escuela de Ingeniería Civil Oceánica, Universidad de Valparaíso, Gran Avenida José Miguel Carrera 4160, San Miguel, 8900186 Santiago. Chile

^c The Chilean Wave Atlas Project, Escuela de Ingeniería Civil Oceánica, Universidad de Valparaíso, Gran Avenida José Miguel Carrera 4160, San Miguel, Santiago, 8900186 Chile

^d Apuerto Ingeniería Ltda, Av. Rosario Sur 91 Of. 701, Las Condes, 756890 Santiago, Chile

e Escuela de Ingeniería Civil Oceánica, Universidad de Valparaíso, Gran Avenida José Miguel Carrera 4160, San Miguel, 8900186 Santiago, Chile

^f INGMAT S.A., José Miguel de La Barra 412, 4° Piso, Santiago, 8320110 Chile

g Escuela de Ingeniería Civil Oceánica, Universidad de Valparaíso, Av. Brasil 1786, Valparaíso, 2362844 Chile

ARTICLE INFO

Article history: Received 31 December 2016 Revised 8 June 2017 Accepted 10 June 2017 Available online 13 June 2017

Keywords: Wave hindcast Wavewatch III calibration Systematic error correction Model performance score Wave climate Chile

ABSTRACT

This paper summarizes the calibration and validation of a 35-year wave hindcast database used to create the Chilean Wave Atlas. The hindcast was generated with the Wavewatch III wave model and consists of: i) time series of wave statistical parameters in a $1^{\circ} \times 1^{\circ}$ grid throughout the Pacific Ocean; ii) spectral data at points latitudinally spaced every 2° off the Chilean coast. A comprehensive calibration process was undertaken in order to assess the performance of statistical parameters at different locations under normal and extreme conditions. A multi-criteria performance score was defined to select the optimal Wavewatch III model configuration. Few buoy records available and a broad set of satellite data were used in this process. A correction method was then applied to the statistical parameters in order to reduce systematic errors of the model. The Atlas showed better performance when compared to existing databases under normal wave conditions. However, the accuracy was shown to be lesser for the highest wave heights, consistently following the behaviour of other databases. This deficiency in the estimate of extreme values has important consequences in the design of coastal structures, and its improvement remains to be solved.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Paradoxically, ocean waves have been poorly investigated in Chile, a country with near 4.000 km of continental coasts and a maritime territory larger than its land surface. Extreme waves have shown significant variability between existing hindcasts compared at the same locations along Chile (Gallardo et al., press; Winckler et al., press). This local variability confirms the findings of Ardhuin et al. (2011), who found that the possible cause of differences in global wave hindcasts is the accuracy of wind reanalysis, especially during the strong winds responsible of the most energetic sea states.

* Corresponding author.

(M. Álvarez), arielgallardo.y@gmail.com (A. Gallardo), hhidalgo.luarte@gmail.com (H. Hidalgo), patricio.winckler@uv.cl (P. Winckler).

http://dx.doi.org/10.1016/j.ocemod.2017.06.004 1463-5003/© 2017 Elsevier Ltd. All rights reserved. The project entitled "Chilean Wave Atlas" (referred as Atlas hereafter) was conceived in order to make the information of the wave climate freely-accessible to the public. The main purpose of the project is to create a wave hindcast database with a locally calibrated model and an accompanying document that comprehensively describes the wave climate in Chilean coasts, including a thorough characterization of uncertainty and errors. The Atlas, documentation and database are accessible in www.oleaje.uv.cl (Beyá et al., 2016).

Wave climate statistics based on NOAA/NCEP and ECMWF wave reanalysis are available in coarse regional maps off the Chilean coasts (e.g., Cornett, 2008; Cruz, 2008). Wave climate studies in the region stem from the recent interest in understanding the global impacts of climate change (e.g., CEPAL, 2011; Hemer et al., 2013a,b, 2015; Wang et al., 2014, 2015), while others de-

CrossMark

E-mail addresses: jose.beya@uv.cl (J. Beyá), marco.alvarez.24@gmail.com

Acronym list	
AOC1	Main wave hindcast generated for the Atlas
AOC2	Alternative wave hindcast used to show vari-
	ability of extreme waves in the Atlas
BIAS	Bias, the average of the error
CNES	Climate Forecast System Boardhuid
CESW2	Climate Forecast System version 2
CIMEAV	Cillilate Folecast Systelli Version 2 Centro de Investigación y Modelación de Fenó
CIIVITAV	menos Aleatorios. Valparaíso
CS05	Caires and Sterl (2005)
DIA	Discrete Interaction Approximation
	(Hasselmann et al., 1985)
DOP-MOP	Dirección de Obras Portuarias, Ministerio de
	Obras Públicas
ECIMIWF	European Centre for Medium-Range Weather
FFM	Explorador de Energía Marinas
ENVISAT	Environmental Satellite
ERA-Interim	Global atmospheric reanalysis from 1979, con-
	tinuously updated in real time
ERS-1	European Remote Sensing Satellite 1
ERS-2	European Remote Sensing Satellite 2
ESA	European Space Agency
ETOPO1	1 arc-minute Gridded Global Relief Data
ETOPO2v2	2 arc-minute Gridded Global Relief Data
GEBCU	General Ballymetric Chart of the Oceans
GFU	Ceneralized Multiple DIA (Tolman and
GMD	Grumbine, 2013)
GSE	Garden Sprinkler Effect (Booij and Holthui-
	jsen, 1987)
GSHHS	Global Self-consistent, Hierarchical, High-
	resolution Geography
IFKEWIEK	l'exploitation de la mer
IOWAGA	Interdisciplinary Ocean wave for geophysical
10111011	and other applications
LN1	WWIII-Switch, Linear energy growth,
	Cavaleri and Malonotte-Rizzoli parametriza-
	tion (1981)
MAE	Mean absolute error
MPI	Message Passing Interface
NASA/CNFS	National Aeronautics and Space Administra-
i wish y ci i Lo	tion/Centre National d'Études Spatiales
NCEP	National Centers for Environmental Prediction
NL2	WWIII-Switch, nonlinear wave interactions re-
	solved by DIA method
NL3	WWIII-Switch, nonlinear wave interactions re-
	solved by GMD method
NOAA	National Oceanic and Atmospheric Administra-
	tion
NOAA WWIII	Archived wave modelled data from NOAA
NOAA CESR	Wave reanalysis based on CFSR winds
PR2/UO	WWIII-Switch. Ultimate Ouickest scheme and
,- C	diffusive correction method for GSE alleviation
PR3/UQ	WWIII-Switch, Ultimate Quickest scheme and
	spatial averaging method for GSE alleviation
	(Tolman, 2002)
RMSE	Root mean square error
K²	Coefficient of determination

SEED	WWIII-Switch, linear energy growth by seed- ing algorithm (Tolman, 2014)
SI	Scatter index
SHOA	Servicio Hidrográfico y Oceanográfico de la Ar- mada
SS	Skill score
ST1	WAM3 source term package
ST2/STAB2	WWIII-Switch, Growth and Wind Dissipation
	Package by Tolman and Chalikov (1996)
ST3/STAB3	WWIII-Switch, Growth and Wind Dissipation
	Package by WAM cycle 4 (Bidlot et al., 2005)
ST4	WWIII-Switch, Growth and Wind Dissipation
	Package by Ardhuin et al. (2010)
ST6	WWIII-Switch, Growth and Wind Dissipation
	Package by BYDRZ
WAM	3rd generation wave model (WAMDI, 1988)
WWIII	Wavewatch III v.4.18 (Tolman, 2014)

rive from wave energy assessments (e.g. Arinaga and Cheung, 2012; Barstow et al., 1998; Cornett, 2008, 2009; Cruz, 2008; Gunn and Stock-Williams, 2012; Krogstad and Barstow, 1999; Pontes, 1998; Santo et al., 2016). On a local level, wave energy assessments with higher spatial resolution at selected nearshore locations along the Chilean coasts have been carried out by Barstow et al. (2009), Contreras and Winckler (2008), Cruz et al. (2009), DGF (2013), Guzmán (2012), Mediavilla and Sepúlveda (2016) and Monárdez et al. (2008). These studies, based on both proprietary and freely available wave databases obtained using Wavewatch III (Tolman, 2014) and WAM (WAMDI, 1988), do not provide detailed information of the offshore wave climate.

Unfortunately, the quality of data sets off the Chilean coasts is poor due to the lack of a permanent offshore data buoy network, as those existing in United States (e.g., Hamilton, 1980), Spain (Clemente, 2001) and Italy (Arena et al., 2001). Indeed, the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA) intermittently operates a single Watchkeeper directional buoy located offshore Valparaíso and occasionally deploys short term nearshore buoys or ADCP's for specific purposes. A wave assessment study (CORFO-INNOVA 09CN14-5718) produced buoy records in central and south Chile during 2011 and 2013, which comprise the longest records available for the calibration and validation of the Atlas.

The present study explains the methodology for the calibration and validation of the database of the Atlas. Section 2 describes the data sources used for wave modelling and explains the methodology for model calibration and error correction. Section 3 presents the results of the model calibration, correction of systematic errors, validation of the database and comparison with existing wave hindcasts. Section 4, presents the discussion of the results and Section 5 the conclusions of the study.

2. Methodology

Data sources, modelling and systematic error correction methodologies used for the generation of the Atlas database are described below.

2.1. Satellite and buoy data

The following satellite altimeter data, available at different time and space resolutions since 1991, were collected from the following databases: ERS-1 (Attema and Francis, 1991), ERS-2 (Francis et al., 1995), ENVISAT (Louet, 2001), Jason-1 (Ménard et al., 2003), Jason-2 (Lambin et al., 2010), GFO (SPAWAR, 2010) and

Download English Version:

https://daneshyari.com/en/article/5766446

Download Persian Version:

https://daneshyari.com/article/5766446

Daneshyari.com