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a b s t r a c t 

Discretisation of the horizontal pressure gradient force in layered ocean models is a challenging task, 

with non-trivial interactions between the thermodynamics of the fluid and the geometry of the layers 

often leading to numerical difficulties. We present two new finite-volume schemes for the pressure gra- 

dient operator designed to address these issues. In each case, the horizontal acceleration is computed as 

an integration of the contact pressure force that acts along the perimeter of an associated momentum 

control-volume. A pair of new schemes are developed by exploring different control-volume geometries. 

Non-linearities in the underlying equation-of-state definitions and thermodynamic profiles are treated 

using a high-order accurate numerical integration framework, designed to preserve hydrostatic balance 

in a non-linear manner. Numerical experiments show that the new methods achieve high levels of con- 

sistency, maintaining hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer 

geometries, non-linear equations-of-state and non-uniform vertical stratification profiles. These results 

suggest that the new pressure gradient formulations may be appropriate for general circulation models 

that employ hybrid vertical coordinates and/or terrain-following representations. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The development of flexible layered ocean models, capable of 

adapting to the complex vertical structure associated with strat- 

ified geophysical flows, represents an important ongoing numeri- 

cal challenge in global climate modelling and numerical weather 

prediction. Compared to conventional fixed-grid formulations, lay- 

ered models, in which the fluid is subdivided into a set of curvi- 

linear layers, offer an opportunity to improve the fidelity with 

which vertical ocean transport processes are represented ( Griffies 

et al., 20 0 0 ). In this study, the issue of constructing a consistent 

and accurate numerical formulation for evaluation of the horizon- 

tal pressure gradient force in arbitrarily layered ocean models is 

discussed in detail. While seemingly innocuous, the development 

of stable and consistent discretisation schemes presents a signif- 
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icant numerical challenge, due to the complex interplay between 

non-linearities in the underlying fluid equation-of-state, the depth- 

wise stratification profiles, and the sloping geometry of the dis- 

crete fluid layers themselves. 

This paper describes two new formulations for the pressure 

gradient operator that attempt to address these difficulties. We be- 

gin with a description of the overall numerical formulation, ex- 

pressing the layered equations-of-motion in terms of an arbitrary 

vertical coordinate. In the following sections we briefly discuss sev- 

eral well-known instabilities associated with conventional horizon- 

tal pressure gradient formulations; review the semi-analytic ap- 

proach of Adcroft et al. (2008) ; and then present our new tech- 

niques. Particular attention is paid to the development of flex- 

ible, high-order accurate numerical integration procedures, de- 

signed to preserve hydrostatic balance in the presence of the var- 

ious non-linearities imposed by the thermodynamic and geomet- 

rical structure of the problem. The experimental results presented 

in Section 6 are designed to assess the consistency, accuracy and 

stability of the new schemes, contrasting the relative performance 

of the two new formulations for several two-dimensional ocean-at- 

rest type benchmark problems. 
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2. A simplified layered ocean model 

Following Bleck (2002) , Adcroft and Hallberg (2006) , Higdon 

(20 02) ; 20 05 ) and Leclair and Madec (2011) , the hydrostatic and 

non-Boussinesq equations of motion for a rotating geophysical 

fluid can be expressed in terms of a generalised vertical coordinate 

s as a set of five prognostic conservation laws, with two equations 

for the horizontal velocity components, two balance-laws for a pair 

of thermodynamic variables, an evolution equation for a pressure 

thickness variable, and a diagnostic expression for the equation-of- 

state of the fluid. Specifically, adopting similar notion to that in- 

troduced in Bleck (2002) , the continuous equations can be written 

as 

∂ t ( u h ) + (u h · ∇ s ) u h + 

˙ s ∂ s ( p ) ∂ p ( u h ) + f u 

⊥ 
h = ∇ s ( �) 

+ ρ−1 ∇ s ( p ) + F u h , (1) 

∂ p (�) = ρ−1 ( T , S, p ) , (2) 

∂ t (∂ s (p)) + ∇ s · ( u h ∂ s (p) ) + ∂ s ( ̇ s ∂ s (p) ) = F p , (3) 

∂ t (∂ s (p) T ) + ∇ s · ( u h ∂ s (p) T ) + ∂ s ( ̇ s ∂ s (p) T ) = F T , (4) 

∂ t (∂ s (p) S) + ∇ s · ( u h ∂ s (p) S ) + ∂ s ( ̇ s ∂ s (p) S ) = F S . (5) 

Here u h = (u, v ) is the horizontal velocity field, u 

⊥ 
h 

= (−v , u ) , and 

f is the Coriolis parameter. � = gz is the geopotential, where g is 

the acceleration due to gravity and z is the height from a refer- 

ence surface. The differential quantity ∂ s ( p ) is a vertical pressure- 

thickness variable and ˙ s is an associated flow-rate, normal to sur- 

faces of constant s. T and S are the scalar temperature and salin- 

ity distributions, respectively. Note that the specific choice of ther- 

modynamic pairing is dependent on the equation of state used, 

with, for example, potential temperature and practical salinity 

( T , S ) = 

(
θ, S p 

)
used in a number of existing thermodynamic mod- 

els ( Wright, 1997 ), while recent formulations ( Roquet et al., 2015; 

McDougall and Barker, 2011; Jackett et al., 2006 ) necessitate a 

switch to the conservative temperature and absolute salinity pair 

( T , S ) = ( �, S A ) . The forcing terms F u h , F p , F T and F S incorporate 

any additional sources and sinks associated with each quantity, in 

addition to the effect of generalised diffusion/mixing on both the 

momentum and thermodynamic variables, respectively. The fluid 

density ρ = f ( T , S, p ) is diagnosed via a general non-linear equa- 

tion of state, and the geopotential � = gz is expressed in terms of 

hydrostatic balance. The differential operator ∂ t denotes a deriva- 

tive with respect to time, ∂ s denotes a derivative with respect to 

the generalised vertical coordinate s . ∇ s = 

(
∂ x , ∂ y , 0 

)
is a layerwise 

gradient operator, taken along surfaces of constant s . Expressions 

for the transport of passive tracers can be added to this system 

via the inclusion of additional advection-diffusion equations of the 

form of ( Eq. (5) ). 

In this study, a layered Arbitrary Lagrangian Eulerian (ALE) for- 

mulation is employed, discretising the vertical coordinate s into a 

stack of discrete fluid layers, and setting the cross-coordinate flow- 

rate ˙ s to zero. Such a constraint implies dynamic motion of the 

layer interface surfaces themselves, with the thickness of the fluid 

layers evolving in time due to mass conservation. Integrating ( Eq. 

(1) –(5) ) over the vertical extent of each layer and setting ˙ s = 0 , the 

semi-discrete equations for a given layer k can be written 

∂ t 
(
ū h,k 

)
+ ( ̄u h · ∇ s ) ū h + f ̄u 

⊥ 
h 

= 

1 

�p k 

∫ 
k 

∇ s ( �) + ρ−1 ∇ s ( p ) d p + F̄ u h ,k , (6) 

∂ t (�p k ) + ∇ s ·
(
ū h,k �p k 

)
= �p k F̄ p,k , (7) 

∂ t 
(
�p k T̄ k 

)
+ ∇ s ·

(
ū h,k �p k T̄ k 

)
= �p k F̄ T,k , (8) 

∂ t 
(
�p k S̄ k 

)
+ ∇ s ·

(
ū h,k �p k S̄ k 

)
= �p k F̄ S,k . (9) 

Here ( ̄· ) = 

1 
�p 

∫ p t 
p b 

( · ) d p denotes a layer-mean quantity, integrated 

between the lower and upper interfaces p b and p t that define the 

vertical extent of each layer with respect to pressure. The associ- 

ated discrete pressure-thickness variable �p is simply the difference 

in layer interface pressures �p = p b − p t . Integrals of the pressure 

gradient terms in the momentum equation ( Eq. (6) ) have be writ- 

ten explicitly here for consistency with the finite-volume type for- 

mulations developed in Sections 4 and 5 . 

2.1. Existing formulations for the horizontal pressure gradient 

operator 

Numerical issues related to the discretisation of the horizontal 

pressure gradient force have long plagued the development of lay- 

ered ocean models. These numerical errors typically manifest as 

spurious horizontal accelerations, causing the model to erroneously 

‘drift’ away from the desired equilibrium state over time. The gen- 

esis of such difficulties can be explained by examining the interac- 

tion of the two differential operators associated with the pressure 

gradient force in Eq. (6) 

PGF = ∇ s ( �) + ρ−1 ∇ s ( p ) . (10) 

Given particular (conventional) choices of vertical coordinate, 

namely s = z or s = p, the form of the pressure gradient operator 

can be simplified, with one of the two gradient terms ( ∇ s ( �) and 

ρ−1 ∇ s ( p ) ) evaluating to zero. Specifically, in conventional height- 

based coordinates ∇ s ( �) = ∇ z ( �) = 0 , while in a pressure-based 

coordinate system ρ−1 ∇ s ( p ) = ρ−1 ∇ p ( p ) = 0 . Unfortunately, this 

exact cancellation is not preserved when adopting arbitrary ver- 

tical coordinate systems appropriate for layered ocean modelling, 

such as terrain-following coordinates and/or time- and space- 

dependent Lagrangian representations. In such cases, a straight- 

forward discretisation of the two gradient operators in Eq. (10) can 

lead to inconsistencies, with the interaction of the numerical trun- 

cation errors associated with each gradient term leading to inexact 

cancellation. Noting that the magnitude of these two terms is typi- 

cally large compared to the dynamical signal ( Adcroft et al., 2008 ), 

it can be understood that residual errors in the evaluation of the 

pressure gradient force can lead to non-negligible spurious hori- 

zontal motion. This behaviour is exacerbated when the fluid layers 

are steeply sloping and the imposed thermodynamic stratification 

profiles are highly non-uniform. 

Conventionally, layered isopycnic-type models ( Bleck, 2002 ) 

have sought to exploit the so-called Montgomery-potential form 

of the horizontal pressure gradient operator. Setting M = p/ρ + �, 

the horizontal acceleration can be transformed as follows 

PGF = ∇ s ( M ) + p∇ s (ρ
−1 ) . (11) 

Note that in an exact density-following coordinate system ( s = 

ρ), the second term in Eq. (11) can be seen to vanish, with 

p∇ s (ρ−1 ) = p∇ ρ (ρ−1 ) = 0 . While such a result is attractive from a 

theoretical standpoint, it should be noted that practical isopycnic- 

type models do not typically adopt a coordinate system based 

on the exact in-situ densities, preferring instead hybrid potential- 

density-based representations, with height-based transitions em- 

ployed near layer outcropping ( Bleck, 2002 ). Nonetheless, it can be 

argued that use of the Montgomery potential form serves to mit- 

igate associated numerical errors, through a minimisation of the 
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