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a b s t r a c t 

Spectral wave models based on the wave action equation typically use a theoretical framework based on 

depth uniform current to account for current effects on waves. In the real world, however, currents of- 

ten have variations over depth. Several recent studies have made use of a depth-weighted current ˜ U due 

to [Skop, R. A., 1987. Approximate dispersion relation for wave-current interactions. J. Waterway, Port, 

Coastal, and Ocean Eng. 113, 187–195.] or [Kirby, J. T., Chen, T., 1989. Surface waves on vertically sheared 

flows: approximate dispersion relations. J. Geophys. Res. 94, 1013–1027.] in order to account for the ef- 

fect of vertical current shear. Use of the depth-weighted velocity, which is a function of wavenumber (or 

frequency and direction) has been further simplified in recent applications by only utilizing a weighted 

current based on the spectral peak wavenumber. These applications do not typically take into account 

the dependence of ˜ U on wave number k , as well as erroneously identifying ˜ U as the proper choice for 

current velocity in the wave action equation. Here, we derive a corrected expression for the current com- 

ponent of the group velocity. We demonstrate its consistency using analytic results for a current with 

constant vorticity, and numerical results for a measured, strongly-sheared current profile obtained in the 

Columbia River. The effect of choosing a single value for current velocity based on the peak wave fre- 

quency is examined, and we suggest an alternate strategy, involving a Taylor series expansion about the 

peak frequency, which should significantly extend the range of accuracy of current estimates available to 

the wave model with minimal additional programming and data transfer. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Important theoretical advances have been made in the last sev- 

eral decades which have advanced our understanding of wave- 

current interaction in ocean circulation. Theories have been in- 

corporated in numerical models with the main intent of includ- 

ing wind wave effects in ocean circulation without resolving sur- 

face gravity wave motions for computational efficiency. Within typ- 

ical modeling systems, an ocean circulation model is coupled with 

a wave generation and propagation model in order to determine 

wave effects on currents and vice versa. The spectral wave mod- 

els include the effect of the mean flow in the computation of wave 

action flux, and the ocean circulation models account for the wave- 

averaged wave forcing driving or modifying the mean flow. 

Spectral wave models are usually based on the theory for waves 

in the presence of depth-uniform currents. In the real world, how- 

ever, currents are usually vertically sheared to some degree. Re- 

cently, various studies ( van der Westhuysen and Lesser, 2007; Ard- 
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huin et al., 2008; Warner et al., 2010 ) have suggested the use of a 

depth-weighted current ˜ U (k ) as the basis for the wave-current in- 

teraction in propagation models, where ˜ U (k ) is the first order cor- 

rection to the phase speed for an arbitrarily varying current U ( z ) 

and is given by 

˜ U (k ) = 

2 k 

sinh 2 kh 

∫ 0 

−h 

U(z) cosh 2 k (h + z) dz (1) 

where h is the water depth and k is the wave number ( Skop, 1987; 

Kirby and Chen, 1989 ). In application, this approach is often further 

truncated by using ˜ U (k p ) as the representative value of ˜ U for all 

wave components, where k p denotes the wavenumber at the spec- 

tral peak frequency. This procedure is now included as an option 

in widely used models such as Delft-3D and COAWST ( Elias et al., 

2012; Kumar et al., 2011; 2012 ). We remark here that the pertur- 

bation scheme of Kirby and Chen (1989) , defined originally for the 

case of weak current, can be straightforwardly modified to cover 

the case of a strong current with weak additional shear. Assuming 

a fairly arbitrary split between a depth uniform and depth varying 

current 

U(z) = U 0 + αU 1 (z) ; α � 1 (2) 
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and repeating the procedure used to develop the solution in Kirby 

and Chen quickly establishes that the choice for leading order cur- 

rent speed is U 0 = 

˜ U , with the details of the overall solution main- 

tained up to second order. The parameter α represents the mag- 

nitude of current shear; a scaling analysis based on finite depth 

waves with horizontal and vertical length scales proportional to 

k −1 , leads naturally to an expression 

α = 

�

kU s 
(3) 

where � characterizes the maximum value of shear in the current 

profile, and U s is the surface current speed. The expressions devel- 

oped in both the perturbation solution and the analytic solution 

for constant shear discussed below are both easier to interpret us- 

ing a slightly different expression 

α = 

�h 

U s 
(4) 

which is used throughout the remainder of the paper. 

The purpose of this study is to demonstrate the inappropriet- 

ness of the use of the weighted current ˜ U as the current com- 

ponent of the group velocity, and to examine the effect of using 

either the correct or incorrect estimate of the current speed evalu- 

ated only at the spectral peak frequency. We evaluate the accuracy 

of approximate solutions in comparison to analytical or numerical 

solutions for the full theory based on the Rayleigh stability equa- 

tion. The theory described here is limited to unidirectional prop- 

agation on a following or opposing current, and so currents and 

wave numbers appear as scalars rather than vectors. In Section 2 , 

the problem for a linear wave in a uniform domain with arbitrary 

current U ( z ) is established. We then outline the common approx- 

imations for group velocity used in modeling and the errors re- 

sulting in these applications. In Section 3 , we evaluate the approx- 

imations for the analytic case of a wave on a current with con- 

stant vorticity, and establish the consistency of the expressions for 

group velocity derived from the perturbation solution of Kirby and 

Chen (1989) . Section 4 examines comparable results of the numer- 

ical solution for a current profile measured at the mouth of the 

Columbia River (MCR) ( Kilcher and Nash, 2010 ). In Section 5 , we 

evaluate the shortcomings of practical approximations in existing 

coupled circulation-spectral wave models, where it is typical to use 

only ˜ U (k p ) as the current speed. Finally, in Section 6 we describe a 

strategy for providing a compact but significantly more accurate 

representation of current advection velocity in SWAN or similar 

models, using a Taylor series expansion of the expression for the 

wavenumber-dependent current speed about the reference value 

at the peak frequency. 

2. Theory and approximate expressions for the absolute group 

velocity C ga 

2.1. General theory 

We consider the linearized wave motion of an incompressible, 

inviscid fluid, with wave number k and phase velocity C a = ωk /k 2 , 

propagating on a stream of velocity U ( z ) in finite water depth h . 

Current and depth variables are assumed to be uniform in horizon- 

tal directions ( Fig. 1 ). ω denotes the absolute wave frequency in a 

stationary frame of reference, which also fixes the value of U ( z ). 

We seek solutions for the vertical component of the wave orbital 

velocity 

w (x , z, t) = 

˜ w (z)e i (k ·x −ωt) (5) 

The problem for the vertical structure of plane waves in a spa- 

tially uniform domain, riding on a vertically sheared current U ( z ), 

is then given by an extension of the Rayleigh equation to allow for 

Fig. 1. Definition sketch. 

an oblique angle between wave and current direction as well as 

possible rotation of the current vector over depth 

σ (z)( ̃  w 

′′ − k 2 ˜ w ) − σ
′′ 
(z) ̃  w = 0 ; −h ≤ z ≤ 0 

σ 2 
s ˜ w 

′ − [ gk 2 + σs σ
′ 
] ̃  w = 0 ; z = 0 (6) 

˜ w = 0 ; z = −h 

where primes denote differentiation with respect to z and g is 

the gravitational constant. The quantity σ (z) = ω − k · U (z) rep- 

resents a depth-varying relative frequency, with σ s denoting the 

value at the mean surface z = 0 . The separate use of the kine- 

matic surface boundary condition for a surface wave of form η = 

a exp i (k · x − ωt ) gives ˜ w (0) = −iσs a . 

The model (6) has been used in a number of studies of arbitrary 

or idealized velocity distributions; see reviews by Peregrine (1976) , 

Jonsson (1990) and Thomas and Klopman (1997) . For the general 

case of arbitrary U ( z ), Voronovich (1976) has described the con- 

servation law, in the geometric optics approximation, for an adia- 

batic invariant corresponding to the wave action density. Evalua- 

tion of these results requires knowledge of a solution to (6) , how- 

ever. Karageorgis (2012) has shown a method for constructing ex- 

pressions for the dispersion relation for waves on a number of ver- 

tical vorticity distributions, but does not consider the further deter- 

mination of the group velocity. 

For the case of weak shear, solutions to (6) may be obtained 

using a perturbation approach, described to leading order for deep 

water by Stewart and Joy (1974) and extended to finite depth by 

Skop (1987) and to second order by Kirby and Chen (1989) . Con- 

sidering deep water waves, Shrira (1993) has further demonstrated 

how series solutions may be extended to high order. Alternately, 

numerical solutions may be obtained using a shooting method due 

to Fenton (1973) . In the following, we limit ourselves to the eval- 

uation of the first and second-order solutions presented in Kirby 

and Chen (1989) and further limit ourselves to waves and currents 

propagating in the same direction. For definiteness, we suppose 

that waves are propagating towards the right with c > 0 and k 

> 0, while the current can be propagating in either ± x direction. 

2.2. Perturbation solution of Kirby and Chen (1989) 

Following Kirby and Chen (1989) , we assume that the steady 

current velocity is small relative to some measure of wave phase 

speed. Here, we use a Froude number based on the surface velocity 

U s = U(0) defined by 

F = 

U s √ 

gh 

; | F | � 1 (7) 

The wave phase speed is given by 

C a = 

ω 

k 
= C 0 + (F ) C 1 + (F 2 ) C 2 + O (F 3 ) (8) 

where we indicate ordering w/r F schematically and retain dimen- 

sional expressions for now. C 0 is the usual result for linear waves 
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