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a b s t r a c t 

The large-amplitude internal solitary waves commonly observed in the coastal ocean can propagate for 

long distances for long times, so that it may be necessary to take account of the effects of the Earth’s 

background rotation. In this case an appropriate model wave evolution equation is the Ostrovsky equa- 

tion, whose typical solutions indicate that internal solitary waves will evolve into envelope wave pack- 

ets. Unlike the more usual Korteweg-de Vries solutions which are typically rank-ordered wave packets, 

these are centred with the largest waves in the middle. This qualitative feature, together with certain key 

quantitative parameters such as the envelope carrier wavenumber and speed, can be sought in oceanic 

observations. Hence we have examined many SAR images of internal solitary waves with the general aim 

of finding features indicating that rotational effects have become significant. From these we report in 

detail on six typical cases of which four give indications of rotational effects. In addition we use a two- 

layer fluid model to estimate how the rotational parameters depend on the background stratification and 

topography. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Internal solitary waves in a rotating reference frame: the 

Ostrovsky equation 

Large-amplitude internal solitary waves are commonly observed 

to propagate in the coastal ocean, see the reviews by Grimshaw 

(20 01) , Holloway et al. (20 01) , Ostrovsky and Stepanyants (2005) , 

Helfrich and Melville (2006) , Grimshaw et al. (2007, 2010) and 

the book by Vlasenko et al. (2005) . It is now widely accepted that 

the basic paradigm for these waves is based on the Korteweg-de 

Vries (KdV) equation, first derived in this context by Benney 

(1966) and Benjamin (1966) and subsequently by many others, see 

the aforementioned references. In a reference frame moving with 

a linear long wave speed c , the KdV equation is 

ηt + μηηx + ληxxx = 0 . (1) 

Here the subscripts denote partial derivatives, η( x , t ) is the ampli- 

tude of the linear long wave mode φ( z ) corresponding to a linear 

long wave with phase speed c , which is determined from the 

modal equation, 

{ ρ0 (c − u 0 ) 
2 φz } z − gρ0 z φ = 0 , for − h < z < 0 , (2) 

∗ Corresponding author. 

E-mail address: r.grimshaw@ucl.ac.uk (R. Grimshaw). 

and φ = 0 at z = −h, (c − u 0 ) 
2 φz = gφ, at z = 0 . (3) 

Here ρ0 ( z ) is the stably stratified background density stratification, 

and u 0 ( z ) is a horizontal background shear current. The coefficients 

μ and λ are given by 

Iμ = 3 

∫ 0 

−h 

ρ0 (c − u 0 ) 
2 φ3 

z dz, (4) 

Iλ = 

∫ 0 

−h 

ρ0 (c − u 0 ) 
2 φ2 dz, (5) 

I = 2 

∫ 0 

−h 

ρ0 (c − u 0 ) φ
2 
z dz. (6) 

In general the modal Eqs. (2) and (3) support an infinite number 

of modes, but here as is customary in the literature, we will 

confine attention to the first baroclinic mode. 

However, these oceanic internal waves are often observed to 

propagate for long distances over several inertial periods, and 

hence the effect of the Earth’s background rotation is potentially 

significant. A prominent example are the large ISWs that propagate 

across the South China Sea, see Zhao and Alford (2006) and Alford 

et al. (2010) . There are also numerous remote sensing images 

throughout the coastal oceans that show multiple wave packets, 

see Jackson (2004) , separated by the M 2 period, indicating that 
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Fig. 1. SAR image and backscatter profile for the New Zealand Plateau. 

the ISWs persist over periods longer than the local inertial period. 

The relevant extension of the KdV Eq. (1) that includes the effects 

of rotation is the Ostrovsky equation, derived initially by Ostrovsky 

(1978) , and later in a two-dimensional framework by Grimshaw 

(1985) , 

{ ηt + μηηx + ληxxx } x = γ η. (7) 

The background rotation is represented by the coefficient γ given 

by, Grimshaw (2013) , 

Iγ = f 2 
∫ 0 

−h 

ρ0 �φz dz, ρ0 (c − u 0 )� = ρ0 (c − u 0 ) φz − (ρ0 u 0 ) z φ. 

(8) 

where f is the Coriolis parameter. In the absence of a background 

current ( u 0 = 0 ) � = φz and so γ = f 2 / 2 c. In this case, the usual 

situation in the ocean, from (5) and (8) we see that λγ > 0, 

and then it is known that Eq. (7) does not support a steady 

solitary wave solution, see Grimshaw and Helfrich (2012) and 

the references therein. The simplest explanation is that then the 

additional term on the right-hand side of (7) removes the spectral 

gap in which solitary waves exist for the KdV equation, and hence 

no solitary waves are expected to occur. Note that when there 

is a non-zero background current, then it is possible, but very 

unlikely in oceanic conditions, that λγ < 0, Grimshaw (2013) . 

Nevertheless, if this should occur, then the Ostrovsky Eq. (7) does 

support a solitary wave, albeit of envelope type, see Grimshaw 

et al. (1998, 2016) and Obregon and Stepanyants (1998) . 

Next, we review briefly the salient features of the Ostrovsky 

Eq. (7) needed to interpret SAR observations. For the normal case 

when λγ > 0 Grimshaw and Helfrich (2008) , Grimshaw and 

Helfrich (2012) and Grimshaw et al. (2013) have shown that the 

long-time effect of rotation is the destruction of an initial ISW 

by the radiation of small-amplitude inertia-gravity waves, and the 

eventual emergence of a coherent steadily propagating nonlinear 

envelope wave packet typical of nonlinear Schrodinger (NLS) 

models. Analogous behaviour was found by Helfrich (2007) and 

Helfrich and Grimshaw (2008) in numerical simulations of fully 

nonlinear models of a two-layer fluid. The packet envelope prop- 

agates with a speed close to the maximum group velocity c m 

. For 

the Ostrovsky Eq. (7) the linear dispersion relation for sinusoidal 

waves of wavenumber k , frequency ω is 

c p = 

ω 

k 
= 

γ

k 2 
− λk 2 , (9) 

where c p is the phase velocity. The corresponding group velocity 

is 

c g = 

dω 

dk 
= − γ

k 2 
− 3 λk 2 . (10) 

Since we can assume without loss of generality that c > 0, it 

follows that then λ > 0, γ > 0, c g is negative for all wavenumbers 

k , and has a local maximum where d c g /d k = 0 at k = k m 

where 

3 λk 4 m 

= γ ; the maximum in the group velocity is c m 

= −2 γ /k 2 m 

= 

−2 
√ 

3 γ λ. Note that as γ increases so does k m 

, | c m 

|. 

The numerical simulations reported by Grimshaw and Hel- 

frich (2008) , Grimshaw and Helfrich (2012) and Grimshaw et al. 

(2013) show that an initial KdV solitary wave decays, emitting 

radiating inertia-gravity waves and is extinguished in a finite time, 

followed by the emergence of a nonlinear wave packet, with enve- 

lope speed close to c m 

and a carrier wavenumber close to k m 

. Im- 

portantly for our later comparisons with observations we note that 

the weakly nonlinear theory of Grimshaw and Helfrich (2008) pre- 

dicts that the carrier wavenumber is enhanced by nonlinearity 

and becomes k c = 3 k m 

/ 2 . Once formed, this packet persists and 

remains coherent for a very long time. Suppose that the initial 

condition η(x, 0) = η0 (x ) is the KdV solitary wave with amplitude 

a 0 , 

η0 (x ) = a o sech 

2 
(K 0 x ) , μa 0 = 12 λK 

2 
0 . (11) 

At a later time the amplitude a s is given by, see the aforemen- 

tioned references, 

| a s | 1 / 2 = | a 0 | 1 / 2 − 	t, 	 = γ

√ 

12 λ

| μ| . (12) 

Thus the solitary wave is extinguished in a finite time 

t e = 

1 

γ

{ | μa 0 | 
12 λ

}1 / 2 

, (13) 

which is proportional to | a 0 | 
1/2 / γ . Since more general initial con- 

ditions for the KdV equation will produce a train of solitary waves, 

we conjecture that again, under the influence of rotation, these 

will be extinguished and replaced with envelope wave packets. 

Next, by examining the integrability or otherwise of the re- 

duced Ostrovsky equation, that is (7) with the third-order linear 

dispersive term omitted, Grimshaw et al. (2012) showed that ro- 

tation inhibits nonlinear steepening, and hence the formation of 

solitary-like waves, consistent with results found numerically by 

Gerkema and Zimmerman (1995) , Gerkema (1996) and Helfrich 

(2007) . Grimshaw et al. (2012) defined the Ostrovsky number, 
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