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The large-amplitude internal solitary waves commonly observed in the coastal ocean can propagate for
long distances for long times, so that it may be necessary to take account of the effects of the Earth’s
background rotation. In this case an appropriate model wave evolution equation is the Ostrovsky equa-
tion, whose typical solutions indicate that internal solitary waves will evolve into envelope wave pack-
ets. Unlike the more usual Korteweg-de Vries solutions which are typically rank-ordered wave packets,

Keywords: these are centred with the largest waves in the middle. This qualitative feature, together with certain key
Internal solitary waves quantitative parameters such as the envelope carrier wavenumber and speed, can be sought in oceanic
Rotation observations. Hence we have examined many SAR images of internal solitary waves with the general aim
SAR images of finding features indicating that rotational effects have become significant. From these we report in

detail on six typical cases of which four give indications of rotational effects. In addition we use a two-
layer fluid model to estimate how the rotational parameters depend on the background stratification and
topography.

© 2017 Elsevier Ltd. All rights reserved.

1. Internal solitary waves in a rotating reference frame: the ,
Ostrovsky equation and ¢ =0 at z=-h (c-up)°¢.=gp. at z=0. (3)
Here po(z) is the stably stratified background density stratification,
and ug(z) is a horizontal background shear current. The coefficients

uand A are given by

0
In=3 /7}1 po(c —up)? @3 dz, (4)

Large-amplitude internal solitary waves are commonly observed
to propagate in the coastal ocean, see the reviews by Grimshaw
(2001), Holloway et al. (2001), Ostrovsky and Stepanyants (2005),
Helfrich and Melville (2006), Grimshaw et al. (2007, 2010) and
the book by Vlasenko et al. (2005). It is now widely accepted that
the basic paradigm for these waves is based on the Korteweg-de
Vries (KdV) equation, first derived in this context by Benney

0
D= [ polc—up?¢dz, (5)
(1966) and Benjamin (1966) and subsequently by many others, see ~h

the aforementioned references. In a reference frame moving with
a linear long wave speed c, the KdV equation is

Ne + UNNx + Ay = 0. (1)

Here the subscripts denote partial derivatives, n(x, t) is the ampli-
tude of the linear long wave mode ¢(z) corresponding to a linear
long wave with phase speed c¢, which is determined from the
modal equation,

{po(c—up)?P;}; — 8po,p =0, for —h<z<0, (2)
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0
1=2 [ pole—uo)g?dz (6)

In general the modal Eqs. (2) and (3) support an infinite number
of modes, but here as is customary in the literature, we will
confine attention to the first baroclinic mode.

However, these oceanic internal waves are often observed to
propagate for long distances over several inertial periods, and
hence the effect of the Earth’s background rotation is potentially
significant. A prominent example are the large ISWs that propagate
across the South China Sea, see Zhao and Alford (2006) and Alford
et al. (2010). There are also numerous remote sensing images
throughout the coastal oceans that show multiple wave packets,
see Jackson (2004), separated by the M, period, indicating that
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Fig. 1. SAR image and backscatter profile for the New Zealand Plateau.

the ISWs persist over periods longer than the local inertial period.
The relevant extension of the KdV Eq. (1) that includes the effects
of rotation is the Ostrovsky equation, derived initially by Ostrovsky
(1978), and later in a two-dimensional framework by Grimshaw
(1985),

(e + 1unnx + A = ¥ (7)

The background rotation is represented by the coefficient y given
by, Grimshaw (2013),

0
Iy = f? /_h 0o®@P,dz,  po(c—ug)P = po(C —Ug), — (0ollo).P-
(8)

where f is the Coriolis parameter. In the absence of a background
current (uy = 0) ® = ¢, and so y = f2/2c. In this case, the usual
situation in the ocean, from (5) and (8) we see that Ay > 0,
and then it is known that Eq. (7) does not support a steady
solitary wave solution, see Grimshaw and Helfrich (2012) and
the references therein. The simplest explanation is that then the
additional term on the right-hand side of (7) removes the spectral
gap in which solitary waves exist for the KdV equation, and hence
no solitary waves are expected to occur. Note that when there
is a non-zero background current, then it is possible, but very
unlikely in oceanic conditions, that Ay < 0, Grimshaw (2013).

Nevertheless, if this should occur, then the Ostrovsky Eq. (7) does
support a solitary wave, albeit of envelope type, see Grimshaw
et al. (1998, 2016) and Obregon and Stepanyants (1998).

Next, we review briefly the salient features of the Ostrovsky
Eq. (7) needed to interpret SAR observations. For the normal case
when Ay > 0 Grimshaw and Helfrich (2008), Grimshaw and
Helfrich (2012) and Grimshaw et al. (2013) have shown that the
long-time effect of rotation is the destruction of an initial ISW
by the radiation of small-amplitude inertia-gravity waves, and the
eventual emergence of a coherent steadily propagating nonlinear
envelope wave packet typical of nonlinear Schrodinger (NLS)
models. Analogous behaviour was found by Helfrich (2007) and
Helfrich and Grimshaw (2008) in numerical simulations of fully
nonlinear models of a two-layer fluid. The packet envelope prop-
agates with a speed close to the maximum group velocity c,,. For
the Ostrovsky Eq. (7) the linear dispersion relation for sinusoidal
waves of wavenumber k, frequency w is

w
G="7= klz — K2, (9)
where ¢, is the phase velocity. The corresponding group velocity
is
do Y 2

Cg = K _—k2—3)»k. (10)
Since we can assume without loss of generality that ¢ > O, it
follows that then A > 0, ¥ > 0, ¢g is negative for all wavenumbers
k, and has a local maximum where dcg/dk =0 at k = k;, where
31k4 = y; the maximum in the group velocity is ¢m = -2y /k2, =
—2,/3yA. Note that as y increases so does km, |cm|.

The numerical simulations reported by Grimshaw and Hel-
frich (2008), Grimshaw and Helfrich (2012) and Grimshaw et al.
(2013) show that an initial KdV solitary wave decays, emitting
radiating inertia-gravity waves and is extinguished in a finite time,
followed by the emergence of a nonlinear wave packet, with enve-
lope speed close to ¢, and a carrier wavenumber close to kp. Im-
portantly for our later comparisons with observations we note that
the weakly nonlinear theory of Grimshaw and Helfrich (2008) pre-
dicts that the carrier wavenumber is enhanced by nonlinearity
and becomes k. = 3kp/2. Once formed, this packet persists and
remains coherent for a very long time. Suppose that the initial
condition 7(x, 0) = ng(x) is the KdV solitary wave with amplitude
do,
no(x) = apsech®(Kox), puag = 12AK3. (11)

At a later time the amplitude as is given by, see the aforemen-
tioned references,

121
T=y/oT (12)

Thus the solitary wave is extinguished in a finite time

12
_ 1] |paol
te_y{ 12 } ’ (13)

Jas|'”> = Jao| "2 ~ Tt

which is proportional to |ag|'/2/y. Since more general initial con-
ditions for the KdV equation will produce a train of solitary waves,
we conjecture that again, under the influence of rotation, these
will be extinguished and replaced with envelope wave packets.
Next, by examining the integrability or otherwise of the re-
duced Ostrovsky equation, that is (7) with the third-order linear
dispersive term omitted, Grimshaw et al. (2012) showed that ro-
tation inhibits nonlinear steepening, and hence the formation of
solitary-like waves, consistent with results found numerically by
Gerkema and Zimmerman (1995), Gerkema (1996) and Helfrich
(2007). Grimshaw et al. (2012) defined the Ostrovsky number,
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