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a b s t r a c t 

In this paper, an Ensemble Kalman Filter (EnKF) based regional ocean data assimilation system has been 

developed and applied to the South Australian Sea. This system consists of the data assimilation algorithm 

provided by the NCAR Data Assimilation Research Testbed (DART) and the Regional Ocean Modelling Sys- 

tem (ROMS). We describe the first implementation of the physical balance operator (temperature-salinity, 

hydrostatic and geostrophic balance) to DART, to reduce the spurious waves which may be introduced 

during the data assimilation process. The effect of the balance operator is validated in both an idealised 

shallow water model and the ROMS model real case study. In the shallow water model, the geostrophic 

balance operator eliminates spurious ageostrophic waves and produces a better sea surface height (SSH) 

and velocity analysis and forecast. Its impact increases as the sea surface height and wind stress increase. 

In the real case, satellite-observed sea surface temperature (SST) and SSH are assimilated in the South 

Australian Sea with 50 ensembles using the Ensemble Adjustment Kalman Filter (EAKF). Assimilating SSH 

and SST enhances the estimation of SSH and SST in the entire domain, respectively. Assimilation with 

the balance operator produces a more realistic simulation of surface currents and subsurface temperature 

profile. The best improvement is obtained when only SSH is assimilated with the balance operator. A case 

study with a storm suggests that the benefit of the balance operator is of particular importance under 

high wind stress conditions. Implementing the balance operator could be a general benefit to ocean data 

assimilation systems. 

Crown Copyright © 2017 Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

By using the Bayesian theorem, data assimilation provides an 

objective criterion for fusing observations with numerical models 

to produce an estimate of the true state (e.g. Lahoz and Schneider, 

2014; Wikle and Berliner, 2007 ). This is a crucial step in provid- 

ing an optimal initial condition for ocean forecasting (e.g. Lahoz 

and Schneider, 2014; Blayo et al., 2014 ). Global ocean data assim- 

ilation has developed rapidly during the past decade, and an in- 

creasing number of products are provided by groups worldwide 

(e.g., Global Ocean Data Assimilation Experiment, https://www. 

godae-oceanview.org/ ). However, the typical resolution of global 

models is still too low to resolve mesoscale features thus there is 

a need to develop regional ocean data assimilation systems ( Moore 

et al., 2013 ). 

There are two popular data assimilation approaches: variational 

and sequential ( Lahoz and Schneider, 2014 ). The variational ap- 

proach adjusts the model trajectories to fit the observations by 
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minimising the cost function. On the other hand, the sequential 

approach updates the model state by comparing the mean and 

variability of both model and data, each time when the new ob- 

servation is available. These two approaches are both based on the 

Bayesian theorem and can be simplified to similar algorithms un- 

der the assumptions of Gaussianity and linearity. The detailed de- 

scription of data assimilation algorithms has been explored exten- 

sively (e.g. Lahoz and Schneider, 2014; Wikle and Berliner, 2007; 

Evensen, 2009 ). 

The Kalman Filter ( Kalman, 1960 ) is a sequential data as- 

similation algorithm designed for a linear dynamical model 

with Gaussian-distributed model and observation errors. Evensen 

(1994) developed the ensemble method by using a Monte Carlo 

technique to approximate the mean and covariance of a high- 

dimensional system. Compared with the variational data assimila- 

tion such as four-dimensional variational method (4DVAR), EnKF 

needs much less effort to implement since the tangent linear and 

adjoint models are not needed. It is also possible to use different 

physical schemes in the ensemble members. 

EnKF has been used in several regional ocean data assimilation 

studies. Evensen and van Leeuwen (1996) developed the first EnKF 

http://dx.doi.org/10.1016/j.ocemod.2017.06.007 
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Fig. 1. A schematic description of the balanced data assimilation system. 

based regional data assimilation system for the Agulhas current us- 

ing a quasigeostrophic model. Seo et al. (2010) assimilated SST in a 

northwest Pacific ROMS model through a stochastic EnKF scheme, 

but only SST was assimilated and physical balance was not studied. 

Here we present the first implementation of DART ( Anderson et al., 

2009 ), a community data assimilation facility to ROMS, to provide 

several state-of-the-art algorithms with localisation, inflation tech- 

niques. Also, we use balance constraints to reduce the spurious 

waves generated in the data assimilation process. 

The localisation technique is needed to reduce the harm caused 

by the spurious covariances with distant grid points in EnKF 

with limited ensemble members ( Lorenc, 2003; Houtekamer and 

Mitchell, 2001; Gaspari and Cohn, 1999 ). However, localisation may 

cause imbalance to the dynamical system ( Lorenc, 2003; Grey- 

bush et al., 2011 ), although a balanced model error covariance 

produces balanced analysis state ( Cohn and Parrish, 1991 ). Lorenc 

(2003) pointed out that when SSH observation at a single point 

is assimilated without localisation, the increments of SSH and 

ocean currents are balanced. If localisation is used, the gradient of 

SSH increases while the ocean currents reduce. Therefore spurious 

ageostrophic waves are created in this process. A schematic de- 

scription of this example can be found in Greybush et al. (2011) (in 

their Fig. 1 ). Mitchell et al. (2002) reported that different ensem- 

ble size, assimilating frequency or localisation radius can cause im- 

balance for GCMs. Kepert (2009) suggested using localisation of 

streamfunction and velocity potential instead of u and v veloci- 

ties, but this method is not easy to implement for regional ocean 

models. For the multivariate problem, it is also difficult to spec- 

ify the relationship among various variables. A common practice 

is to use linear regression, but this can be a major source of er- 

ror ( Anderson, 2007b ). To solve this problem, Anderson (2007b ) 

proposed to ‘localise’ the impact of observation to model states 

(e.g., SST observation at one point and simulated ocean currents 

at another point), but he also pointed out that it is usually dif- 

ficult to define the ‘distance’ between them, especially for high- 

dimensional GCMs. In this paper, we use a multivariate balance 

operator proposed by Weaver et al. (2005) to solve the imbal- 

ance problem. In this algorithm, each model variable is separated 

into balanced and unbalanced components, and several balance as- 

sumptions are made to calculate the increments. This physical con- 

straint has been used in several variational ocean data assimilation 

systems (e.g. Balmaseda et al., 2013; Li et al., 2008; Moore et al., 

2011c ). 

The DART/ROMS data assimilation system is applied to the 

South Australian Sea (31.5 °S–39.5 °S, 117 °E–140 °E). This region 

hosts the world’s longest zonal, mid-latitude shelf (about 2500 km) 

between Cape Leeuwin and Portland ( Middleton and Bye, 2007 ). 

The Leeuwin Current, flowing southward from the tropics near the 

west coast of Australia, enters the South Australian Sea around 

Cape Leeuwin and extends to Tasmania. This region is recog- 

nised as one of the 64 Large Marine Ecosystems (LMEs) by NOAA 

( http://www.lme.noaa.gov/ ). There are also emerging tourism ven- 

tures and oil/gas exploration. The simulation and prediction of 

the ocean circulation, temperature and other oceanic variables are 

therefore necessary. 

In this paper, we first describe the data assimilation system and 

the balance operator in Section 2 . In Section 3 we evaluate the ef- 

fect of balance operator using an idealised two-dimensional shal- 

low water model. The results of the South Australian Sea model 

are given in Section 4 . In Section 5 we discuss and analyse the 

results from Section 3 and 4 . A summary concludes this paper in 

Section 6. 

2. Method and data 

The Ensemble Adjustment Kalman Filter (EAKF) ( Anderson, 

2001 ) is implemented as the data assimilation algorithm. We in- 

troduce a physical balance operator to this system and analyse the 

performance in both an idealised shallow water model and the 

ROMS real case. 

2.1. Ensemble Kalman Filter and the balance operator 

There are many implementations of the ensemble Kalman Fil- 

ter (e.g. Evensen, 2003; Houtekamer and Mitchell, 2001; Anderson, 

2001 ). The data assimilation cycle consists of two stages. Firstly, in 

the forecasting stage, the model state x evolves through a dynamic 

model and secondly in the analysis stage the estimation of model 

state is improved by comparing the forecast x f and the observation 

y o , the analysis is computed as, 

x a = x f + K[ y o − H(x f )] , (1) 

where B is the model error covariance matrix, R is the observa- 

tion error covariance. H is the observation operator that projects 

the model state x to the observation space y = H(x ) . The differ- 

ence between x a and x f is defined as the increment �x . The opti- 

mal variance minimising weight is given by the Kalman gain, 

K = BH 

T (H BH 

T + R ) −1 , (2) 

In the ensemble data assimilation approach, the B matrix is 

computed from the N ensemble members in each data assimila- 

tion cycle as, 

B = X 

f X 

f T , (3) 

where X = 

1 √ 

N−1 
(x 1 − x , x 2 − x , . . . , x N − x ) is the perturbation ma- 

trix whose columns are the deviations from the ensemble mean. 

For an ocean model such as ROMS, there are 5 components in 

the state vector x : sea surface height η; potential temperature T ; 

salinity S ; horizontal velocities u and v . Temperature is usually the 

most observed variable in the ocean so Weaver et al. (2005) pro- 

posed to compute the relations between the variables based on T . 

Each variable except T is decomposed into two components, the 

balanced component and the unbalanced one. Therefore the per- 

turbations δx can also be decomposed as following, ⎛ 
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where the variables with subscript B represent the balanced com- 

ponent of the variables while those with subscript U represent the 

unbalanced one. The balanced part of variable x 1 can be derived 

from other variable x 2 through the linear balance operator L . The 

details of L are explained in Appendix A . 

The model error covariance is thus converted to, 

B = LB u L 
T , (5) 
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