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In this paper, an Ensemble Kalman Filter (EnKF) based regional ocean data assimilation system has been
developed and applied to the South Australian Sea. This system consists of the data assimilation algorithm
provided by the NCAR Data Assimilation Research Testbed (DART) and the Regional Ocean Modelling Sys-
tem (ROMS). We describe the first implementation of the physical balance operator (temperature-salinity,
hydrostatic and geostrophic balance) to DART, to reduce the spurious waves which may be introduced

Keywords: during the data assimilation process. The effect of the balance operator is validated in both an idealised
ROMS shallow water model and the ROMS model real case study. In the shallow water model, the geostrophic
EnKF balance operator eliminates spurious ageostrophic waves and produces a better sea surface height (SSH)

Multivariate balance and velocity analysis and forecast. Its impact increases as the sea surface height and wind stress increase.

In the real case, satellite-observed sea surface temperature (SST) and SSH are assimilated in the South
Australian Sea with 50 ensembles using the Ensemble Adjustment Kalman Filter (EAKF). Assimilating SSH
and SST enhances the estimation of SSH and SST in the entire domain, respectively. Assimilation with
the balance operator produces a more realistic simulation of surface currents and subsurface temperature
profile. The best improvement is obtained when only SSH is assimilated with the balance operator. A case
study with a storm suggests that the benefit of the balance operator is of particular importance under
high wind stress conditions. Implementing the balance operator could be a general benefit to ocean data
assimilation systems.

Crown Copyright © 2017 Published by Elsevier Ltd. All rights reserved.

1. Introduction minimising the cost function. On the other hand, the sequential

approach updates the model state by comparing the mean and

By using the Bayesian theorem, data assimilation provides an
objective criterion for fusing observations with numerical models
to produce an estimate of the true state (e.g. Lahoz and Schneider,
2014; Wikle and Berliner, 2007). This is a crucial step in provid-
ing an optimal initial condition for ocean forecasting (e.g. Lahoz
and Schneider, 2014; Blayo et al., 2014). Global ocean data assim-
ilation has developed rapidly during the past decade, and an in-
creasing number of products are provided by groups worldwide
(e.g., Global Ocean Data Assimilation Experiment, https://www.
godae-oceanview.org/). However, the typical resolution of global
models is still too low to resolve mesoscale features thus there is
a need to develop regional ocean data assimilation systems (Moore
et al,, 2013).

There are two popular data assimilation approaches: variational
and sequential (Lahoz and Schneider, 2014). The variational ap-
proach adjusts the model trajectories to fit the observations by

* Corresponding author.
E-mail addresses: y.lil4@imperial.ac.uk, yli.ouc@gmail.com (Y. Li).

http://dx.doi.org/10.1016/j.0cemod.2017.06.007
1463-5003/Crown Copyright © 2017 Published by Elsevier Ltd. All rights reserved.

variability of both model and data, each time when the new ob-
servation is available. These two approaches are both based on the
Bayesian theorem and can be simplified to similar algorithms un-
der the assumptions of Gaussianity and linearity. The detailed de-
scription of data assimilation algorithms has been explored exten-
sively (e.g. Lahoz and Schneider, 2014; Wikle and Berliner, 2007;
Evensen, 2009).

The Kalman Filter (Kalman, 1960) is a sequential data as-
similation algorithm designed for a linear dynamical model
with Gaussian-distributed model and observation errors. Evensen
(1994) developed the ensemble method by using a Monte Carlo
technique to approximate the mean and covariance of a high-
dimensional system. Compared with the variational data assimila-
tion such as four-dimensional variational method (4DVAR), EnKF
needs much less effort to implement since the tangent linear and
adjoint models are not needed. It is also possible to use different
physical schemes in the ensemble members.

EnKF has been used in several regional ocean data assimilation
studies. Evensen and van Leeuwen (1996) developed the first EnKF
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Fig. 1. A schematic description of the balanced data assimilation system.

based regional data assimilation system for the Agulhas current us-
ing a quasigeostrophic model. Seo et al. (2010) assimilated SST in a
northwest Pacific ROMS model through a stochastic EnKF scheme,
but only SST was assimilated and physical balance was not studied.
Here we present the first implementation of DART (Anderson et al.,
2009), a community data assimilation facility to ROMS, to provide
several state-of-the-art algorithms with localisation, inflation tech-
niques. Also, we use balance constraints to reduce the spurious
waves generated in the data assimilation process.

The localisation technique is needed to reduce the harm caused
by the spurious covariances with distant grid points in EnKF
with limited ensemble members (Lorenc, 2003; Houtekamer and
Mitchell, 2001; Gaspari and Cohn, 1999). However, localisation may
cause imbalance to the dynamical system (Lorenc, 2003; Grey-
bush et al., 2011), although a balanced model error covariance
produces balanced analysis state (Cohn and Parrish, 1991). Lorenc
(2003) pointed out that when SSH observation at a single point
is assimilated without localisation, the increments of SSH and
ocean currents are balanced. If localisation is used, the gradient of
SSH increases while the ocean currents reduce. Therefore spurious
ageostrophic waves are created in this process. A schematic de-
scription of this example can be found in Greybush et al. (2011) (in
their Fig. 1). Mitchell et al. (2002) reported that different ensem-
ble size, assimilating frequency or localisation radius can cause im-
balance for GCMs. Kepert (2009) suggested using localisation of
streamfunction and velocity potential instead of u and v veloci-
ties, but this method is not easy to implement for regional ocean
models. For the multivariate problem, it is also difficult to spec-
ify the relationship among various variables. A common practice
is to use linear regression, but this can be a major source of er-
ror (Anderson, 2007b). To solve this problem, Anderson (2007b)
proposed to ‘localise’ the impact of observation to model states
(e.g., SST observation at one point and simulated ocean currents
at another point), but he also pointed out that it is usually dif-
ficult to define the ‘distance’ between them, especially for high-
dimensional GCMs. In this paper, we use a multivariate balance
operator proposed by Weaver et al. (2005) to solve the imbal-
ance problem. In this algorithm, each model variable is separated
into balanced and unbalanced components, and several balance as-
sumptions are made to calculate the increments. This physical con-
straint has been used in several variational ocean data assimilation
systems (e.g. Balmaseda et al., 2013; Li et al., 2008; Moore et al.,
2011c).

The DART/ROMS data assimilation system is applied to the
South Australian Sea (31.5°S-39.5°S, 117°E-140°E). This region
hosts the world’s longest zonal, mid-latitude shelf (about 2500 km)
between Cape Leeuwin and Portland (Middleton and Bye, 2007).
The Leeuwin Current, flowing southward from the tropics near the
west coast of Australia, enters the South Australian Sea around
Cape Leeuwin and extends to Tasmania. This region is recog-
nised as one of the 64 Large Marine Ecosystems (LMEs) by NOAA

(http://www.Ime.noaa.gov/). There are also emerging tourism ven-
tures and oil/gas exploration. The simulation and prediction of
the ocean circulation, temperature and other oceanic variables are
therefore necessary.

In this paper, we first describe the data assimilation system and
the balance operator in Section 2. In Section 3 we evaluate the ef-
fect of balance operator using an idealised two-dimensional shal-
low water model. The results of the South Australian Sea model
are given in Section 4. In Section 5 we discuss and analyse the
results from Section 3 and 4. A summary concludes this paper in
Section 6.

2. Method and data

The Ensemble Adjustment Kalman Filter (EAKF) (Anderson,
2001) is implemented as the data assimilation algorithm. We in-
troduce a physical balance operator to this system and analyse the
performance in both an idealised shallow water model and the
ROMS real case.

2.1. Ensemble Kalman Filter and the balance operator

There are many implementations of the ensemble Kalman Fil-
ter (e.g. Evensen, 2003; Houtekamer and Mitchell, 2001; Anderson,
2001). The data assimilation cycle consists of two stages. Firstly, in
the forecasting stage, the model state x evolves through a dynamic
model and secondly in the analysis stage the estimation of model
state is improved by comparing the forecast ¥ and the observation
y°, the analysis is computed as,

x? = xf + K[y° - Hx)]. (1)

where B is the model error covariance matrix, R is the observa-
tion error covariance. H is the observation operator that projects
the model state x to the observation space y = H(x). The differ-
ence between x? and ¥/ is defined as the increment Ax. The opti-
mal variance minimising weight is given by the Kalman gain,

K =BHT(HBHT +R)~!, (2)

In the ensemble data assimilation approach, the B matrix is
computed from the N ensemble members in each data assimila-
tion cycle as,

B=X/XT, 3)

where X = \/ﬁ(?ﬁ —X,Xy —X,...,Xy —X) is the perturbation ma-
trix whose columns are the deviations from the ensemble mean.

For an ocean model such as ROMS, there are 5 components in
the state vector x: sea surface height 7; potential temperature T;
salinity S; horizontal velocities u and v. Temperature is usually the
most observed variable in the ocean so Weaver et al. (2005) pro-
posed to compute the relations between the variables based on T.
Each variable except T is decomposed into two components, the
balanced component and the unbalanced one. Therefore the per-
turbations 8x can also be decomposed as following,

T T 0 T
S S Su Su
nl=|m|+|m|=Ln]| (4)
u up Uy Uy
v Up (41 141

where the variables with subscript B represent the balanced com-
ponent of the variables while those with subscript U represent the
unbalanced one. The balanced part of variable x; can be derived
from other variable x, through the linear balance operator L. The
details of L are explained in Appendix A.

The model error covariance is thus converted to,

B=1LB,L", (5)
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