Contents lists available at ScienceDirect

Review

Progress in Oceanography

journal homepage: www.elsevier.com/locate/pocean

Uncertainties and applications of satellite-derived coastal water quality products

PROGRESS IN

Guangming Zheng^{a,b,*}, Paul M. DiGiacomo^a

^a NOAA/NESDIS Center for Satellite Applications and Research, 5830 University Research Court, College Park, MD 20740, USA
^b Global Science & Technology, Inc., 7855 Walker Drive, Suite 200, Greenbelt, MD 20770, USA

ARTICLE INFO

Keywords: Light absorption Light scattering Light backscattering Water-leaving radiance Remote-sensing reflectance Water quality Pollutants Pathogens Chlorophyll Suspended particles Suspended sediment Chromophoric dissolved organic matter

ABSTRACT

Recent and forthcoming launches of a plethora of ocean color radiometry sensors, coupled with increasingly adopted free and open data policies are expected to boost usage of satellite ocean color data and drive the demand to use these data in a quantitative and routine manner. Here we review factors that introduce uncertainties to various satellite-derived water quality products and recommend approaches to minimize the uncertainty of a specific product. We show that the regression relationships between remote-sensing reflectance and water turbidity (in terms of nephelometric units) established for different regions tend to converge and therefore it is plausible to develop a global satellite water turbidity product derived using a single algorithm. In contrast, solutions to derive suspended particulate matter concentration are much less generalizable; in one case it might be more accurate to estimate this parameter based on satellite-derived particulate backscattering coefficient, whereas in another the nonagal particulate absorption coefficient might be a better proxy. Regarding satellite-derived chlorophyll concentration, known to be subject to large uncertainties in coastal waters, studies summarized here clearly indicate that the accuracy of classical reflectance band-ratio algorithms depends largely on the contribution of phytoplankton to total light absorption coefficient as well as the degree of correlation between phytoplankton and the dominant nonalgal contributions. Our review also indicates that currently available satellite-derived water quality products are restricted to optically significant materials, whereas many users are interested in toxins, nutrients, pollutants, and pathogens. Presently, proxies or indicators for these constituents are inconsistently (and often incorrectly) developed and applied. Progress in this general direction will remain slow unless, (i) optical oceanographers and environmental scientists start collaborating more closely and make optical and environmental measurements in parallel, (ii) more efforts are devoted to identifying optical, ecological, and environmental forerunners of autochthonous water quality issues (e.g., onsite growth of pathogens), and, (iii) environmental processes associated with the source, transport, and transformation of allochthonous issues (e.g., transport of nutrients) are better understood. Accompanying these challenges, the need still exists to conduct fundamental research in satellite ocean color radiometry, including development of more robust atmospheric correction methods as well as inverse models for coastal regions where optical properties of both aerosols and hydrosols are complex.

1. Introduction

Coastal (marine, estuarine, and inland) zones are among the most important and valuable regions in the world from both an ecological and a socio-economic perspective. They are extremely productive, supplying living aquatic (e.g., fisheries; diverse benthic habitats) and other natural resources (e.g., oil, gas, minerals, and water). They are also hubs of commerce and transportation, and the most heavily populated and urbanized regions on earth. As such, coastal pollution is a significant and growing problem in both developed and developing nations. Contaminants such as oil, toxic chemicals, heavy metals, bacteria, viruses, nutrients, and sediments can adversely impact human health and coastal ecosystems and thus have significant environmental and socio-economic ramifications (e.g., Islam and Tanaka, 2004; IOCCG, 2008; Karydis and Kitsiou, 2013).

It can be difficult to identify sources of pollution in coastal zones, as well as monitoring and forecasting the subsequent fate, transport, and impacts of contaminants. In particular, coastal zones are interfacial regions where atmospheric, aquatic, and terrestrial domains converge (Karydis and Kitsiou, 2013) and are typically characterized by complex

* Corresponding author at: NOAA/NESDIS Center for Satellite Applications and Research, 5830 University Research Court, College Park, MD 20740, USA. *E-mail address:* guangming.zheng@noaa.gov (G. Zheng).

http://dx.doi.org/10.1016/j.pocean.2017.08.007

Received 12 December 2016; Received in revised form 29 August 2017; Accepted 30 August 2017 Available online 01 September 2017

0079-6611/ © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

Nomenclature a_m absorption coefficient of mineral particles			
Nomen		a_p	absorption coefficient of suspended particles
Acronyms		a_p^*	mass-specific absorption coefficient of suspended parti-
AVIRIS	Airborno Visible /Infrared Imaging Chastromator	~	cles, = a_p /[SPM]
	Airborne Visible/Infrared Imaging Spectrometer	a_{ph}	absorption coefficient of phytoplankton
CDOM	Chromophoric Dissolved Organic Matter	a_{ph}^*	chlorophyll-specific absorption coefficient of phyto-
Chl-a	Chlorophyll-a		plankton, = a_{ph} /[Chl-a]
DOC	Dissolved Organic Carbon	a_w	absorption coefficient of pure water
EPA	Environmental Protection Agency	b	total scattering coefficient of bulk water
FIB	Fecal Indicator Bacteria	b_b	total backscattering coefficient of bulk water
FNRU	Formazin Nephelometric Ratio Unit	b_{bd}	backscattering coefficient of organic detritus and hetero-
FNU	Formazin Nephelometric Unit	1	trophic microorganisms
	C Global Change Observation Mission-Climate	b_{bm}	backscattering coefficient of mineral particles
GEO	Group on Earth Observations	b_{bp}	backscattering coefficient of suspended particles
GEOSS	Global Earth Observation System of Systems	b_{bph}	backscattering coefficient of phytoplankton
GOCI	Geostationary Ocean Color Imager	b_{bw}	backscattering coefficient of pure water
HAB	Harmful Algal Bloom	b_p	total scattering coefficient of suspended particles
HICO	Hyperspectral Imager for the Coastal Ocean	b_p^{*}	mass-specific scattering coefficient of suspended particles,
IOCCG	International Ocean Color Coordinating Group		$= b_p / [SPM]$
IOP	Inherent Optical Property	b_s	light side-scattering coefficient
ISO	International Organization for Standardization	b_w	total scattering coefficient of pure water
JPSS	Joint Polar Satellite System	с	beam attenuation coefficient of bulk water
MAA	Mycosporine-like Amino Acid	D	diameter parameter characterizing size of a particle
MERIS	MEdium Resolution Imaging Spectrometer	D_{V50}	median diameter of particle volume distribution
MODIS	MODerate-resolution Imaging Spectroradiometer	F_{O}	extraterrestrial solar irradiance
MSI	Multi-Spectral Imager	K_d	diffuse attenuation coefficient of downwelling irradiance
NIR	Near-Infrared	K_d^{tr}	minimum K_d of the water body within 410–665 nm
NOMAD	1 0	$\overline{K_d}$	average K_d within the first optical depth
NTRU	Nephelometric Turbidity Ratio Unit	L_{TOA}	radiance at top of atmosphere
NTU	Nephelometric Turbidity Unit	L_u	upwelling radiance
OCR	Ocean Color Radiometry	L_w	water-leaving radiance
OLCI	Ocean and Land Color Instrument	т	complex refractive index relative to water, $\equiv n + i n'$
OLI	Operational Land Imager	n'	imaginary part of the refractive index relative to water
PACE	Plankton, Aerosol, Cloud, and ocean Ecosystem	n	real part of the refractive index relative to water
PSU	practical salinity units	nL_w	normalized water-leaving radiance
RGB	Red-Green-Blue (Image)	n_w	real refractive index of water
SAR	Synthetic Aperture Radar	Q_a	single-particle absorption efficiency factor
SeaWiFS	S Sea-viewing Wide Field-of-view Sensor	Q_{bb}	single-particle backscattering efficiency factor
SeaBASS	S SeaWiFS Bio-optical Archive and Storage System	R_{rs}	remote-sensing reflectance just above water surface
SGLI	Second-generation GLobal Imager	r _{rs}	remote-sensing reflectance just below water surface
SNR	Signal-to-Noise Ratio	S_d	exponential-law spectral slope of nonalgal particulate ab-
SPF	Scattering phase function		sorption coefficient
SPM	Suspended Particulate Matter	S_g	exponential-law spectral slope of CDOM absorption coef-
SWIR	Shortwave Infrared		ficient
TOA	top of atmosphere	V	volume of a particle
UV	Ultraviolet	γ	power-law spectral slope of backscattering coefficients
VIIRS	Visible Infrared Imager Radiometer Suite	θ	scattering angle relative to the incident direction
		θ	underwater nadir angle of the upwelling radiance
List of symbols		θ_{sun}	solar zenith angle
		σ_a	single-particle absorption cross section
λ	wavelength of light in vacuum	σ_b	single-particle total scattering cross section
а	total absorption coefficient of bulk water	σ_{bb}	single-particle backscattering cross section
a_d	absorption coefficient of organic detritus and hetero-	φ	azimuth angle of the upwelling radiance
	trophic microorganisms	ω ₀	single-scattering albedo, $\equiv b/(a + b)$
ag	absorption coefficient of CDOM	ω_b	$\equiv b_b/(a+b_b)$
a [*]	DOC-specific absorption coefficient of CDOM, $= a_g/$		
6	[DOC]		

dynamics, including small-scale, ephemeral, and episodic processes and phenomena. Pollution inputs can be localized within one of these domains (e.g., an offshore oil spill that does not reach land) or else be transboundary in nature (e.g., urban or agricultural runoff discharged into an ocean or lake, or an offshore oil spill or sewage discharge transported onshore). Pollution sources can also be characterized as either "point" or "nonpoint" types. Point sources of pollution in the coastal environment are singular and localized and include discharge from a shore-based industrial or municipal wastewater treatment plant, or from a ship or other offshore structure (e.g., oil platform). Nonpoint sources of pollution in the coastal environment come from many diffuse sources and can include stormwater runoff as well as atmospheric deposition. Download English Version:

https://daneshyari.com/en/article/5766463

Download Persian Version:

https://daneshyari.com/article/5766463

Daneshyari.com