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• A  remarkably  simple  approach  to  flash  point  prediction  is put  forward.
• It combines  a power  law  expression  with  geometrical  fragments.
• It proves  as reliable  as models  based  on advanced  QSPR  techniques.
• In addition,  it  provides  insight  into  the  contributions  of  functional  groups.
• Training  and  test  sets  include  respectively  287  and 1170  compounds.

a  r  t i  c  l  e  i  n  f  o

Article history:
Received 5 August 2013
Received in revised form
19 December 2013
Accepted 21 December 2013
Available online 3 January 2014

Keywords:
Flash point
Modeling
Prediction methods
Additivity methods

a  b  s  t  r  a  c  t

Flash  point  temperatures  of  organic  compounds  are  predicted  on  the  basis  of  a  power  law  involv-
ing  21  additive  contributions  associated  with  non-hydrogen  atoms  and ring structures.  The model  is
parametrized  against  a previous  data  set  of  287  simple  organic  molecules.  An average  absolute  error  of
8.6 K  and  a  maximal  error  of  about  50 K are  obtained  when  applying  this  model  to  an  external  test  set of
488 compounds  within  its  applicability  domain.  The  overall  performances  of the  method  are  remarkable
given  its  simplicity  and  the  small  number  of  parameters  involved.  In  addition,  the  present  work  provides
valuable  insight  into  the  influence  of individual  functional  groups  to flash  point  temperatures.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, many studies have been devoted to the develop-
ment of predictive methods to estimate the flash point temperature
(TF) of organic compounds, as summarized in recent reviews [1–3].
Such methods are needed for the design of new compounds to be
used in processes or devices involving energy storage or transfer.
For instance, current efforts to develop new organic electrolytes for
lithium-based rechargeable batteries can be made more efficient
if TF may  be estimated beforehand, in addition to performance-
related properties [4,5]. The availability of a quantitative model for
TF is especially critical for such applications. Indeed, while relatively
large compounds might be preferred to ensure a low volatility and
therefore high TF values, the requirement of a low viscosity puts
some stringent limitations on the size of the solvent molecules in
the electrolyte. Quantitative models for the various properties are

∗ Corresponding author. Tel.: +33 0247344185.
E-mail address: didier.mathieu@cea.fr (D. Mathieu).

therefore needed to identify acceptable trade-offs between safety
and performance characteristics.

Reliable predictions of TF may  be obtained from relationships
involving other experimental properties, including boiling point
(Tb) [6–10], heat of vaporization (�vapH) [11] and heat of combus-
tion [12]. The applicability of such methods being restricted by the
need for experimental data, this work focuses on TF prediction from
molecular formula only. Many approaches are being developed to
this aim, some of them quite successful to predict the flash point
of alkanes [13,14] or alkenes [15]. However, more general mod-
els are less reliable, with average absolute errors (AAE) typically in
the range 10–20 K [16–22], unless they focus on specific classes of
molecules such as diesel fuel components for which TF predictions
yield AAE values slightly <10 K [23]. Whereas extensively param-
eterized methods lead to small errors for fitted TF data [18–21],
significantly larger errors cannot be ruled out as these models are
used to predict TF for new compounds. For instance, the perfor-
mance of a group contribution (GC) method is characterized by
AAE = 10.7 K using statistics derived from the 418 compounds in
the training set [18], to be compared with the value AAE = 14.2 K
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reported from predictions for an alternative data set of 287 organic
compounds [21].

To date, only advanced techniques involving many empirical
parameters led to AAE values <10 K for predicted flash point temper-
atures. These include support vector regression (SVR) [24], artificial
neural networks [25] or consensus models (CM) obtained by aver-
aging results obtained using a number of such techniques [23].
However, their complexity hampers their widespread adoption by
chemical engineers. Furthermore, they do not provide straightfor-
ward insight into the relationships between molecular structure
and flash point. The recent positional distributive contribution
method exhibits similar drawbacks [21]. Applied to TF prediction,
it yields a value as small as 3.77 K for the AAE derived from the
training set, as expected from the ratio between the number of
adjustable parameters (93) and the size of the data set (287).
Unfortunately, no attempt was made to assess the robustness and
predictive value of this method.

2. Modeling approach

To overcome these limitations, we develop an alternative
approach based upon the observation that a simple square root
expression involving only 4 adjustable parameters outperforms a
dedicated ANN to predict TF for alkanes [14]. A straightforward
generalization of the method to organosilicon compounds demon-
strates the performance of this modeling approach compared to
mainstream quantitative structure–property relationships (QSPR)
methodologies [26]. However, although in principle applicable to
arbitrary compounds, this generalized scheme is clearly unlikely to
provide the best performance for purely organic compounds owing
to its focus on Si-containing molecules. Therefore, the approach is
presently applied to simple organic molecules. Following earlier
studies [14,26], TF is obtained according to a power law expression:

TF = f ˛ (1)

where  ̨ < 1 is an empirical exponent and f is a size-extensive quan-
tity obtained as a sum of additive contributions associated with
molecular fragments and structural features i:

f =
∑

i

nifi =
∑

i

nit
1/˛
i

(2)

These equations were obtained on the basis of simple consider-
ations regarding the dependence of TF on the molecular size: (1) for
small compounds, TF must increase with molecular size as larger
molecules require higher temperatures to vaporize and (2) for very
large molecules, TF must be less dependent on the molecular size as
the compounds are likely to decompose before entering the vapor
phase. As a consequence, TF must be a concave increasing function
of molecular size. Rather than reporting values for the additive con-
tributions fi derived from a multilinear regression against f = T1/˛

F ,
we will focus on the newly introduced parameters ti = f ˛

i
as they

have the dimension of temperatures and are thus more amenable
to physical interpretation. As for the exponent ˛, the value of 1/2
derived from n-alkane data [14] will be revised.

The molecular fragments i are defined as follows: every non-
hydrogen atom is assigned a contribution denoted Xnc − nH, where
X, nc and nH stand respectively for its atomic symbol, coordination
number and number of attached hydrogen atoms. For instance, car-
bon atoms in methyl, methylene, ketone and cyano groups define
additive fragments denoted C4-3, C4-2, C3-0 and C2-0, respectively.
Such fragments are somewhat simpler than conventional func-
tional groups CH3, CH2 , >C( O) or C N because bond orders
are ignored. Furthermore, a fragment such as C2-0 reflects the con-
tribution of carbon atoms not only in cyano groups but also in

Table 1
The 21 parameters fi of the present model with corresponding standard deviations
(s.d.) and occurrence numbers Nocc.

i ti (K) s.d. (K) Nocc

Atomic groups:
C3-0 136.3 0.3 111
C3-1  125.6 0.2 93
C3-2  108.5 0.3 19
C4-0  126.6 0.4 24
C4-1  122.0 0.3 87
C4-2  132.3 0.0 223
C4-3  109.5 0.2 272
N2-0 145.3 0.6 5
N3-0 168.1 0.7 3
N3-1 182.2 0.5 7
N3-2 205.6 0.3 14
O1-0 175.2 0.3 72
O2-0 112.1 0.2 47
O2-1  241.3 0.2 63
S2-0  202.8 0.6 4
S2-1  190.1 0.4 8
Cl1-0 178.7 0.4 5
Contribution for the cyano group:

C N 242.3 0.6 4
Ring corrections:
R5 −113.0 0.8 2
R6 −81.9 0.5 9
R6a 156.7 1.0 50

alkynes. Similarly, O1-0 describes the contribution of oxygen atoms
in various groups including ketones, carboxylic acids, N-oxides,
etc. Therefore, present fragments allow for a drastic decrease of
the number of adjustable parameters with respect to more con-
ventional group contribution methods. Since they were initially
introduced on the basis of straightforward geometric consider-
ations [27], they are hereafter referred to as geometrical fragments
(GF).

In practice, a pure GF approach is not possible on the basis of
the present data set, as a standard group contribution C N has to
be introduced for cyano groups. This is because the reference data
set does not exhibit any alkyne compounds. As a result, sp carbon
atoms occur only in nitriles and the individual values of the C2-0
and N1-0 contributions cannot be determined independently.

Finally, three ring corrections are used: R5 and R6 for five and six-
membered non-aromatic rings, and R6a for 6-membered aromatic
rings. Before being applied to TF prediction, this approach proved
highly successful for simpler properties, namely crystal density [27]
and sublimation enthalpy [28]. An obvious limitation of this scheme
is its inability to distinguish isomeric compounds.

The selection of the data set is critical to any method involving
empirical parameters. For comparison purposes, it is clearly desir-
able to re-use a previous set from literature rather that introducing
still another one. It is tempting to select the most extensive data sets
reported so far, which contain over 1600 compounds [22]. How-
ever, methods based on molecular fragments, including the present
one, have difficulties in taking advantage of this particular or a sim-
ilar database, because some fragments are under-represented and
their values are therefore prone to be numerically ill-defined. This
is especially clear considering the number of occurrences of the
fragments used to predict flash points of organosilicon compounds,
listed in Table 1 of Ref. [26]. This issue is even more critical with
methods based on more elaborated fragment definitions, such as
GC methods [25].

In this context, the data set of 287 organic compounds
introduced by Jia et al. [21] is of special interest as it is built from
extensive sampling of homologous series of molecules spanning
the most common functional groups, including ketones, alcohols,
ethers, esters, amines, nitriles, thiols, carboxylic acids, and chloro
compounds. In contrast, peroxides, nitro compounds, amides, or
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