
Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Irene Sánchez-Andrea^{a,b,*}, Jose Luis Sanz^a, Martijn F.M. Bijmans^c, Alfons J.M. Stams^{b,d}

^a Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain

^b Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands

^c Wetsus, Centre of Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands

^d IBB – Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal

HIGHLIGHTS

- Acid mine drainage (AMD) is an important environmental concern.
- Remediation through biological sulfate reduction and metal recovery can be applied for AMD.
- Microbial community composition has a major impact on the performance of bioreactors to treat AMD.
- Acidophilic SRB are strongly influenced by proton, sulfide and organic acids concentration.

ARTICLE INFO

Article history: Received 6 August 2013 Received in revised form 29 November 2013 Accepted 16 December 2013 Available online 26 December 2013

Keywords: Acid mine/rock drainage Sulfate reduction Heavy metals Reactors Acidophilic SRB

ABSTRACT

Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.

© 2013 Elsevier B.V. All rights reserved.

1. The sulfur cycle and generation of acid mine drainage

Sulfur is one of the most abundant elements on Earth. The largest sulfur reservoirs are in sediments and rocks $(7800 \times 10^{18} \text{ g})$ in the form of iron sulfides, mainly pyrite (FeS₂), and gypsum (CaSO₄) or as sulfate in seawater $(1280 \times 10^{18} \text{ g})$ [1]. Sulfur occurs in different oxidation states (from -2 to +6, see Fig. 1) and chemical forms (cysteine, sulfide, sulfate, etc.) in the environment. These compounds can be transformed both chemically and biologically.

 Chemical sulfur processes: The environmental sulfur cycle comprises both atmospheric and terrestrial redox processes. In the terrestrial part, the weathering of rocks releases stored sulfur. Sulfate (SO_4^{2-}) is usually the final oxidation product, which accumulates in minerals (e.g. $CaSO_4$) and in the ocean. There is also a variety of sources that emit sulfur directly into the atmosphere. These sources can be either natural such as volcanic eruptions and evaporation of water or anthropogenic. For instance, burning of fuels releases large quantities of sulfur dioxide into the environment, contributing significantly to air pollution and causing acid rain [2].

- Biological sulfur processes: Microorganisms play an essential role in the sulfur cycle, catalyzing both oxidation and reduction reactions of sulfur compounds (Fig. 1). These reactions include: (1) dissimilatory sulfate reduction, the reduction of sulfate to sulfide is coupled to energy conservation and growth (see Section 3); (2) dissimilatory sulfur reduction, the electron acceptor is elemental sulfur; (3) assimilatory sulfate reduction, the reduced sulfide is assimilated in biomass, proteins, amino-acids and cofactors by plants, fungi and microorganisms; (4) mineralization of organic compounds with hydrogen sulfide release; (5) sulfide oxidation by O₂, NO₃⁻, Fe³⁺ or Mn⁴⁺ as electron acceptors by lithotrophic and phototrophic bacteria, producing sulfur and subsequently

^{*} Corresponding author at: Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands. Tel.: +31 0317 48 3115; fax: +31 0317 48 3829.

E-mail addresses: irene.sanchezandrea@wur.nl, irenesanchezandrea@hotmail.com (I. Sánchez-Andrea).

^{0304-3894/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jhazmat.2013.12.032

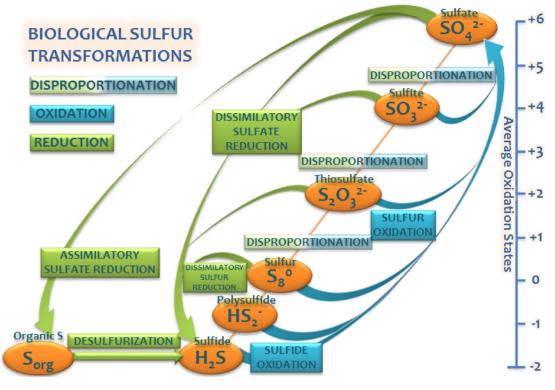


Fig. 1. Biological sulfur transformations.

sulfate; and (6) disproportionation, the coupled oxidation and reduction of sulfur compounds (thiosulfate, sulfite and sulfur) to sulfate and sulfide. Table 1 shows the equations for some of the relevant biological processes with their energy release per reaction.

The generation of acid mine drainage (AMD), waters with low pH and high heavy metals content, is a combined physicochemical and biological process. It starts with the chemical attack (Fe^{3+}) of the ores and continues due to the microbiological regeneration of the Fe^{3+} . The chemical oxidation of the minerals can follow two

Table 1

Stoichiometry and Gibbs free energy changes of some of the relevant conversions in the biological sulfur cycle. Gibbs free energy changes were calculated from [3].

eaction equations		$\Delta G^{\circ\prime}$ [kJ mol $^{-1}$]
ılfide oxidation		
$S^{-} + 3/2O_2 + H^+ \rightarrow S^0 + H_2O$	(1)	-210
$S^- + 2O_2 \rightarrow SO_4^{2-} + H^+$	(2)	-709
$S^- + Fe^{3+} \rightarrow S^0 + Fe^{2+} + H^+$	(3)	-47
$S^- + 2/5NO_3^- \rightarrow \ S^0 + 1/5N_2 + 6/5H_2O$	(4)	-214
ılfur oxidation		
$0^{+} + 1.50_{2} + H_{2}O \rightarrow SO_{4}^{2-} + 2H^{+}$	(5)	-499
$0^{+}+6/5NO_{3}^{-}+2/5H_{2}O \rightarrow SO_{4}^{2-}+3/5N_{2}+4/5H_{2}O$	I ⁺ (6)	-510
isproportionation		
	(7)	-22
$^{0} + H_{2}O \rightarrow 1/4SO_{4}^{2-} + 3/4HS^{-} + 5/4H^{+}$	• • •	9.5
$D_3^{2-} + 2/3H^+ \rightarrow 2/3SO_4^{2-} + 1/3S^0 + 1/3H_2O$	(9)	-7.6
ulfate reduction		
$H_3COO^{-a} + SO_4^{2-} \rightarrow 2HCO_3^{-} + HS^{-}$	(10)	-48
$H_2 + SO_4^{2-} + H^+ \rightarrow HS^- + 4H_2O$	(11)	-151.9
ılfur reduction		
$1/4C_2H_3O_2^{-a} + H_2O + S^0 \rightarrow 1/2HCO_3^{-} + 5/4H^+ + HS^{-}(12)$		-13
$_2 + \tilde{S}^0 \rightarrow HS^- + H^+$	(13)	-27.8
$ \begin{array}{l} ulfur \ oxidation \\ ^{0} + 1.5O_{2} + H_{2}O \rightarrow SO_{4}^{2-} + 2H^{+} \\ ^{1} + 6/5NO_{3}^{-} + 2/5H_{2}O \rightarrow SO_{4}^{2-} + 3/5N_{2} + 4/5H \\ \hline is proportionation \\ 0_{3}^{2^{-}} + H_{2}O \rightarrow 1/4SO_{4}^{2-} + 3/4HS^{-} + 5/4H^{+} \\ + H_{2}O \rightarrow 1/4SO_{4}^{2^{-}} + 3/4HS^{-} + 5/4H^{+} \\ O_{3}^{2^{-}} + 2/3H^{+} \rightarrow 2/3SO_{4}^{2^{-}} + 1/3S^{0} + 1/3H_{2}O \\ \hline ulfate reduction \\ H_{3}COO^{-a} + SO_{4}^{2^{-}} \rightarrow 2HCO_{3}^{-} + HS^{-} \\ H_{2} + SO_{4}^{2^{-}} + H^{+} \rightarrow HS^{-} + 4H_{2}O \\ \hline ulfur reduction \\ /4C_{2}H_{3}O_{2}^{-a} + H_{2}O + S^{0} \rightarrow 1/2HCO_{3}^{-} + 5/4H^{+} \\ + 2 + S^{0} \rightarrow HS^{-} + H^{+} \end{array} $	(5) = (6) = (7) = (6) = (7) = (6) = (7) = (6) = (7)	-499 -510 -22 9.5 -7.6 -48 -151.9 -13 -27.8

^aAcetate is used as a representative organic compound, but other organic compounds may be used as well.

mechanisms depending on the structure of the mineral substrate [4]. Three metal sulfides: pyrite (FeS₂), molybdenite (MoS₂) and tungstenite (WS₂), undergo through the so-called thiosulfate mechanism and the rest of the sulfides undergo through the polysulfide mechanism [5].

Pyrite (FeS₂), the most abundant sulfide mineral in Earth's crust, can serve as example of the thiosulfate mechanism. When pyrite is exposed, its chemical oxidation occurs. Eq. (14) describes the oxidation of pyrite in the presence of oxygen and water [6].

$$FeS_2 + 3.5O_2 + H_2O \rightarrow Fe^{2+} + 2SO_4^{2-} + 2H^+$$
 (14, abiotic)

A critical factor is that ferric iron is able to oxidize pyrite even under anoxic aqueous conditions at a much faster rate (18–170 times faster) than molecular oxygen [7–9], according to Eq. (15).

$$\text{FeS}_2 + 14\text{Fe}^{3+} + 8\text{H}_2\text{O} \rightarrow 15\text{Fe}^{2+} + 2\text{SO}_4^{2-} + 16\text{H}^+$$
 (15, abiotic)

First, the ferric iron attacks the iron—disulfur bonds, oxidizing it partially to thiosulfate (Eq. (16)), which will be later completely oxidized to sulfate again by the ferric iron attack (Eq. (17)). In this mechanism, the end chemical product of the overall reaction is sulfuric acid [10].

$$FeS_2 + 6Fe^{3+} + 3H_2O \rightarrow S_2O_3^{2-} + 7Fe^{2+} + 6H^+$$
 (16, abiotic)

$$S_2O_3^{2-} + 8Fe^{3+} + 5H_2O \rightarrow 2SO_4^{2-} + 8Fe^{2+} + 10H^+$$
 (17, abiotic)

The rest of the sulfides, e.g. chalcopyrite $(CuFeS_2)$, sphalerite (ZnS) or galena (PbS), are oxidized through the other pathway, the polysulfide mechanism, with a combined attack from iron and protons [5]. In this mechanism, polysulfides are first generated (Eq. (18)) and then partially oxidized to elemental sulfur (Eq. (19)).

$$8MeS + 8Fe^{3+} + 8H^+ \rightarrow 8Me^{2+} + 4H_2S_n + 8Fe^{2+} \quad (n \ge 2)$$

(18, abiotic)

$$4H_2S_n + 8Fe^{3+} \rightarrow S_8^{0} + 8Fe^{2+} + 8H^+$$
 (19, abiotic)

Download English Version:

https://daneshyari.com/en/article/576999

Download Persian Version:

https://daneshyari.com/article/576999

Daneshyari.com