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A B S T R A C T

Whereas contemporary land use and land management planning require specific and quantitative georeferenced
soil information, often only general-purpose and qualitative soil maps are available. With a view to fill this gap
for topsoil clay and organic carbon content in the central plateaus of Burundi, we tested for a representative
15 km2 hilly landscape, six types of SCORPAN models. The SCORPAN models were first applied as standalone
trend models and next extended with a component accounting for the spatial autocorrelation of the residuals
from the trend. Various sets of predictors, including class variables derived from the available soil map and
continuous derivatives from a Digital Elevation Model (DEM) and from Landsat-imagery were incorporated. For
clay, the best prediction method was a Residual Kriging (RK) using a Generalized Additive Model (GAM) as trend
built with only DEM derivatives and spectral normalized difference vegetation index (NDVI). Furthermore, the
classical and simplest RK, i.e. using a Least Squares Linear Regression (LR) trend built with only continuous
covariates, outperformed all standalone trend models. For organic carbon, residuals from the trend models were
not significantly auto-correlated, making RK meaningless. In this case the best model was a GAM combining
lithologic units with DEM derivatives and NDVI. Overall, the contribution of soil map–derived predictors to the
model performance was rather weak. It was concluded that, for prediction of specific soil characteristics in the
study area, a SCORPAN approach is preferred the more as the performance can be boosted by kriging of trend
residuals if auto-correlated.

1. Introduction

Current approaches in mapping of soil characteristics explicitly
account for spatial variation of Jenny's soil forming factors (Jenny,
1941) and for possible spatial auto-correlation. Such approaches were
termed digital soil mapping and formalized in so-called “SCORPAN-
SSPFe” models (McBratney et al., 2003), where “SCORPAN” stands for
the Jenny's soil forming factors supplemented with geographic position
(n): soil (s), climate (c), organisms (o), relief (r), parent material (p) and
age (a), and “SSPFe” for “Soil Spatial Prediction Function with spatially
auto-correlated errors”. This family of models is attractive in that it can
incorporate various kinds of previous knowledge in the form of trend
components, including conventional soil maps, while compensating for
their limitation by accounting for spatial auto-correlation of residuals
from the trend components using kriging.

Conventional choropleth soil maps divide in categorical soil map-
ping units (SMUs) what often is a continuum. Moreover, they are, at

least partly, constructed based on (expert) tacit knowledge (Carré et al.,
2007), which prevents their reproduction, even among expert soil
surveyors. The prediction ability of choropleth soil maps has been
augmented by: (1) extrapolating soil profile data to non sampled SMUs
by a multi-level statistical approach (Ottoy et al., 2015), (2) integrating
the accuracy and sharpness of soil map delineations into ordinary
kriging (Boucneau et al., 1998), (3) extrapolating punctual profile data
to all locations in a SMU based on correlation between target soil
attributes and environmental covariates (Meersmans et al., 2008;
Moore et al., 1993).

Other researchers have taken another path consisting in segmenta-
tion of the landscape into units to be used as alternatives to SMUs of
conventional soil maps. For example, MacMillan (2003) and MacMillan
et al. (2000) developed so-called LandMapR toolkits to extract a series
of contextual topographic variables based on which they defined
landforms in terms of relative slope position that they found significant
in explaining variations of soil properties and crop yield in Canada.
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Florinsky et al. (2002) segmented the landscape into so-called accu-
mulation, transit and dissipation zones, and found that this segmenta-
tion explained a larger proportion of variance of solum thickness than
linear regression with continuous DEM derivatives. Wood (1996, 2009)
applied the multi-scale approach to model channels, ridges, pits, peaks,
passes, and planar regions from a DEM. Although not initially oriented
to soil mapping, this approach is easily repeatable by different users as
it relies less on expert knowledge. In the framework of the Global Soil
Partnership and the e-SOTER project (FAO and ISRIC, 2012), DEM-
derived landforms were presented as proxy for improving existing soil
maps, or as alternatives to soil maps in countries with limited soil data
(Köthe, 2012). The lack of soil maps and associated data is obvious in
countries where the progress of national surveys is limited (Mora-
Vallejo et al., 2008).

Choropleth soil maps have also been used as a source of covariates.
Many other covariates are increasingly becoming available and multi-
variate prediction models able to handle different types of covariates
have been devised and improved. In this respect, ordinary kriging, also
referred to as the best linear unbiased predictor (Matheron, 1963) has
been updated to more accurate geostatistical methods that account for
secondary information, of which Residual Kriging (RK) was found the
most flexible. RK is a “SCORPAN-SSPFe” model where the trend
component is usually obtained, either by global linear regression of
continuous covariates on the target variable, or by geo-matching
(Goovaerts, 1997). However, soil variation is often too complex to be
modeled by such simple trend models. For example, using RK based on
a trend built with global linear regression of covariates from LUCAS
database for mapping topsoil organic carbon of Europe, de Brogniez
(2015) obtained unrealistic hot-spots of organic carbon content in
northern Europe. She explained this by the difficulty to model the
presence of microtopography and related high variability of water
regime that influences mineralization rate and organic carbon dy-
namics. Recently more complex modeling techniques have been
proposed. For example, Kumar et al. (2012) used Geographically
Weighted Regression (GWR) to spatially adjust the trend component
of RK and found this approach to be less biased and more accurate for
predicting soil organic carbon stocks than RK based on classical linear
regression. For predicting nitrogen oxides levels in South California, Li
et al. (2012) found that co-kriging of the residuals of a Generalized
Additive Model (GAM) was better than universal kriging, multiple
linear regression and GAM alone. Dai et al. (2014) applied kriging to
organic carbon residuals from a machine learning technique, Artificial
Neural Networks (ANN) and this was more accurate than Inverse
Distance Weighting, Universal Kriging and ANN alone. Boosted Regres-
sion Trees (BRT) is another powerful machine learning technique
(Heremans et al., 2015; Martin et al., 2014; Van Meerbeek et al.,
2014). Martin et al. (2014) compared BRT and related RK for the
prediction of soil organic carbon stocks in France by varying the
number of covariates. With a limited number of covariates, RK
significantly improved BRT predictions. But when several covariates
were included in the BRT model, the spatial auto-correlation of BRT
residuals almost vanished, and RK did not significantly improve the
standalone BRT predictions. Vaysse and Lagacherie (2015) predicted
several soil characteristics from legacy soil profile data in the Langue-
doc-Roussillon region (France) using topographic, geologic, and cli-
matic and land use data as covariates and Random Forests as prediction
model. They found that Random Forests captured most of the spatially-
structured variance of the soil characteristics shown by the available
soil data. Aertsen et al. (2012) also obtained non-auto-correlated
residuals from GAM estimates of forest site index. In principle, any
prediction technique can be cast in RK, provided that related residuals
are spatially auto-correlated. This is the reason why we prefer using the
term “Residual Kriging”, although the same technique has been referred
to as “Simple Kriging with varying local means” in Goovaerts (1997) or
as “Regression Kriging” e.g. in Hengl et al. (2004).

The lack of spatial auto-correlation in residuals from BRT (Martin

et al., 2014), Random Forests (Vaysse and Lagacherie (2015) and from
GAM (Aertsen et al., 2012) raises the question whether in such cases
these standalone models can also outperform RK based on other trend
model types, thereby simplifying the SCORPAN-approach. Further-
more, as exemplified in the above studies, often one soil variable was
studied, whereas in general soil users need quantitative information on
many soil characteristics, possibly with different dynamics. Lastly, soil
maps of many regions and of Burundi in particular are based on limited
field observations, and hence SCORPAN methods could be useful for
improving soil information in these regions. In this paper the objective
was to compare, based on a case study in the Burundi central plateaus,
the performance of digital soil mapping methods for the spatial
prediction of clay and organic carbon (OC) content. Clay content and
OC content are two key soil characteristics strongly related to soil
fertility, water retention, soil erodibility, water pollution and soil
carbon dynamics and hence to land use planning and land management
(Tiessen et al., 1994; Baize, 2000). We adopted a four-level methodo-
logical approach, as follows:

a. Derive a trend model for OC and for clay content from the extract of
the choropleth soil map by geo-matching point observations with
SMUs;

b. Test alternative trend models based on easily available environ-
mental covariates. Six models were tested: (1) geo-matching using
land units obtained by spatial overlay of DEM-derived landforms
and lithologic units, (2) least squares linear regression (LR), (3)
GWR, (4) GAM, (5) BRT and (6) ANN;

c. Test for spatial auto-correlation among residuals from all seven
models mentioned in a. and b., and conduct RK if residuals are
significantly auto-correlated;

d. Compare the prediction performance of all seven trend models each
without and with related RK.

2. Materials and methods

2.1. Study area

The study area (between 3°54′33″–3°56′44″ S and
29°41′30″–29°45′18″ E) is located in the Burundi central plateaus,
which cover more than half of the country. It is a 15 km2 area composed
of two contiguous catchments drained by Mutandu River and
Nyabuyumpu River, respectively. Mutandu and Nyabuyumpu Rivers
are tributaries of the Jiji River and Siguvyaye River, respectively, which
in turn flow into Lake Tanganyika (Fig. 1).

The study area is composed of meta-sedimentary and granitic rocks
that belong to the Karagwe-Ankolean Belt, with Holocene alluvial
deposits in the valley bottoms. The Karagwe-Ankolean Belt is an
orogenic belt of middle Proterozoic age that spans Burundi, Rwanda,
SW Uganda, NW Tanzania and the Kivu-Maniema region in DR Congo
(Tack et al., 2010; Fernandez-Alonso et al., 2012). Both meta-sedimen-
tary and granitic rocks are deformed along a North–South direction.
The research was conducted at catchment scale so as to account for
landscape complexity at the catena level, i.e. from the valley floor to the
hilltop or catchment divide. This landscape is hilly with round-shape
summits. Hillsides are occupied by small farms separated by grasslands
(mainly Eragrostis) and patches of woodlands (mainly eucalyptus,
occasionally coniferous trees). Subsistence agriculture is dominant
and crops are usually intercropped. These are bananas, maize, beans,
peas and Irish and sweet potatoes. The same crops are also grown in
valleys, except for bananas. Fallows are dominated by Digitaria
abyssinica.

2.2. Datasets

2.2.1. Response variables
The response variables were topsoil (0–30 cm depth) clay and OC
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