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The development of accurate visible and near infrared (vis-NIR) spectroscopy calibrationmodels for selected soil
properties based on mobile measurements is essential for site specific soil management at fine sampling scale.
The objective of the present study was to compare the mobile and laboratory prediction performance of vis-
NIR spectroscopy for total nitrogen (TN), total carbon (TC) and soil moisture content (MC) of field soil samples
based on singlefield (SFD), two-field dataset (TFD), UK national dataset (UND) and European continental dataset
(ECD) calibration models developed with linear and nonlinear data mining techniques including spiking. Fresh
soil samples collected from fields in the UK, Czech Republic, Germany, Denmark and the Netherlands were
scannedwith a fibre-type vis-NIR spectrophotometer (tec5 Technology for Spectroscopy, Germany),with a spec-
tral range of 305–2200 nm. After dividing spectra into calibration (75%) and validation (25%) sets, spectra in the
calibration set were subjected to threemultivariate calibrationmodels, including the partial least squares regres-
sion (PLSR), multivariate adaptive regression splines (MARS) and support vector machines (SVM), with leave-
one-out cross-validation to establish calibration models of TN, TC and MC. Results showed that the best model
performance in cross-validationwas obtainedwithMARSmethods for themajority of dataset scales used,where-
as the lowest model performance was obtained with the SFD. The effect of spiking was significant and the best
model performance in general term was obtained when local samples collected from two target fields in the
UK were spiked with the ECD, with coefficients of determination (R2) values of 0.96, 0.98 and 0.93, root mean
square error (RMSE) of 0.01, 0.1 and 1.75, and ratio of performance to interquartile distance (RPIQ) of 7.46,
6.57 and 3.98, for TC, TN andMC, respectively. Therefore, these results suggest that ECD vis-NIRMARS calibration
models can be successfully used to predict TN, TC and MC under both laboratory and mobile measurement
conditions.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Visible and near-infrared (vis-NIR) diffuse reflectance spectroscopy
has attracted increasing interest among soil scientists in recent times,
and has been proposed as a possible method of soil analysis. It provides
higher soil sampling density for mapping purposes compared with con-
ventional laboratory analysis (Shepherd andWalsh, 2002;Wetterlind et
al., 2010). This technique also allows for in field (in situ) non mobile
(Viscarra Rossel and Chen, 2011; Brodský et al., 2013) and mobile mea-
surementwith high soil-sampling resolution (Maleki et al., 2008; Kuang
and Mouazen, 2013). Literature show that Vis-NIR spectroscopy has
been used successfully for modelling and mapping of soil properties,
under both mobile and non-mobile measurement conditions, (i.e.,

Shibusawa et al., 2001; Mouazen et al., 2005; Kuang and Mouazen,
2013; Kuang et al., 2015). However, compared to laboratory spectral
measurements that is done under controlled conditions, mobile spec-
troscopy analyses are affected by environmental factors such as ambient
light, soil moisture content, soil structure, temperature, contamination
by stones and excessive residues (Mouazen et al., 2007; Stenberg
et al., 2010). One way to overcome these negative influences is by
adopting effective spectral data preprocessing and advanced data
mining techniques when developing calibration models for mobile
spectroscopy.

Precision agriculture aims at optimizingmanagement of within field
variability for sustainable increase in land productivity (Bongiovanni
and Lowenberg-Deboer, 2004). Variable-rate fertilizer application,
which requires reliable soil information at a high spatial resolution, is
required to achieve this goal (Wetterlind et al., 2010; Mouazen and
Kuang, 2016). Successful implementation of the mobile vis-NIR
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spectroscopy was reported for sensor based and map-based variable
rate phosphorus fertilization (Maleki et al., 2008; Mouazen and Kuang,
2016) and variable rate N-fertilizer application (Halcro et al., 2013).
However, accurate recommendationmaps for variable rate applications
will depend on accurate prediction of soil properties with vis-NIR spec-
troscopy, which can be achieved by minimizing error in reference and
spectra measurements, minimizing influences of ambient conditions
and finally by adopting effective spectra pre-processing and advanced
data mining techniques.

In order to gain the full advantage of the use of vis-NIR, different
techniques have been applied to the development of calibrationmodels,
such as spiking of samples from target site or dataset into existing spec-
tral library (Brown, 2007; Sankey et al., 2008; Wetterlind et al., 2010;
Kuang andMouazen, 2011, 2013; Guerrero et al., 2014). The geograph-
ical scale of soil samples collected was reported to have influence on
model performance (Sudduth and Hummel, 1996). This will be espe-
cially evident when predicting variations on a small scale (Brown,
2007). Combining global and local samples by adding a few local ones
to a more general soil library (spiking) and recalibrating was proposed
by Brown (2007) as another way to increase the accuracy of soil organic
carbon (SOC) prediction, as opposed to local-sample calibrations.
Sankey et al. (2008) also reported improved prediction results for clay
content, SOC and inorganic carbon, using the same global calibration
set spiked with local samples from three highly variable landscape
study sites in Montana, US, compared with global or local calibrations
alone. Kuang and Mouazen (2013) used spiking technique with differ-
ent dataset ratios for mobile vis-NIR modelling at European field scale.
They achieved good results using partial least square regression
(PLSR) models for soil moisture content (MC), SOC, and total nitrogen
(TN) with residual prediction deviation (RPD) (calculated as standard
deviation of measured soil properties divided by root mean square
error of prediction) of 2.76 to 3.96, 1.88 to 2.38, and 1.96 to 2.52, respec-
tively. Limited works have been reported on the combined effect of
spiking and samples scale onmodel predictive performance in soil anal-
ysis (Sankey et al., 2008; Guerrero et al., 2010, 2014; Wetterlind and
Stenberg, 2010), particularly for mobile collected vis-NIR spectral data,
where no reports could be found in the literature.

As a linear multivariate analysis, PLSR is the most commonly
used technique for soil spectral analysis (Conforti et al., 2013, 2015).
However, the accuracy of linear-regression techniques in spectroscopic
analysis tends to decrease due to the non-linear nature of the relation-
ship between spectral data and the dependent variable (Araújo et al.,
2014). Data-mining techniques, such as artificial neural network
(ANN) (Mouazen et al., 2010; Kuang et al., 2015), multivariate adaptive
regression splines (MARS) (Bilgili et al., 2010; Nawar et al., 2015) and
support-vector machines (SVM) (Morellos et al., 2016; Nawar et al.,
2016),were reported to improve the accuracy of the calibrationmodels.
As a nonlinear method based on the machine learning theory, SVMwas
proposed by Vapnik (1998) to be capable of modelling linear and
nonlinear relationships and solving calibration problemswith high per-
formance (Suykens andVandewalle, 1999). SVMhas been used success-
fully for modelling soil properties based on reflectance spectroscopy
(e.g. Viscarra Rossel and Behrens, 2010; Vohland et al., 2011; Peng et
al., 2014; Nawar et al., 2016), and has gained extensive application in
soil spectroscopy, because of its advantages and high performance
(Viscarra Rossel and Behrens, 2010; Vohland et al., 2011). As nonpara-
metric method MARS estimates complex nonlinear relationships
among independent and dependent variables (Friedman, 1991), and
has been effectively applied in different fields (Luoto and Hjort, 2005;
Bilgili et al., 2010; Felicísimo et al., 2012; Samui, 2012) and generally
exhibits higher performance results for modelling soil properties (e.g.
Shepherd and Walsh, 2002; Bilgili et al., 2010; Nawar et al., 2016).
However, these linear and non-linear modelling methods were not
compared in the literature for soil analyses at different geographical
scales including spiking. This is particularly true for modelling of mobile
collected vis-NIR soil spectra.

The aim of this paper was to compare the predictive performance of
the vis-NIR spectroscopy of TN, TC and MC for field samples based on
single field, two-field, national and continental scales, using PLSR and
two multivariate data-mining techniques, namely, SVM and MARS.
The calibrations were made using laboratory and mobile collected soil
spectra for predicting within-field variation in named soil properties.

2. Materials and methods

2.1. Experimental sites

The experimental wok was carried out in two fields in Yorkshire,
UK. Hagg field is located at Cawood, north Yorkshire with longitudes
of −1.172° and −1.166° W, and latitudes of 53.936° and 53.941° N
with total area of about 21 ha (Fig. 1). This field is characterised by fosters
cooler summer conditions with regular rainfall (average annual
600 mm), and the mean air temperatures range from 1 °C to 6 °C in
winter and from 8 °C to 18 °C in summer, allowing more consistent
crop growth. The field is cultivatedwith vegetables crops (leeks, cabbage,
carrots and onions). The soil type is a slightly acidic sandy loam with
impeded drainage to the south and eastern margins of the field. The
soil organic matter (SOM) ranges between 0.7 and 1.95% at 0–30 cm
depth. Hessleskew field is located in Sancton, north Yorkshire between
longitudes −0.590° and−0.586° W, and latitudes 53.844° and 53.844°
N andwith total area of about 12 ha (Fig. 1). Elevations in the area barely
reach 212 m above sea level. The annual rainfall and air temperature are
in the same range of the Hagg field. The field is characterised by freely
draining with texture varies between clay loam to clay. The SOM ranges
between 0.9 and 2.1%, and it is cultivated with cereal crops in rotation.

2.2. Mobile soil measurement and collection of soil samples

The mobile measurement system designed and developed by
Mouazen (2006) was used tomeasure both fields. It consists of a subsoil-
er, which penetrates the soil to the required depth, making a trench,
whose bottom is smoothened by the downwards forces acting on the
subsoiler (Mouazen et al., 2005). The subsoiler was retrofitted with the
optical unit and attached to a frame. This was mounted onto the three
point linkage of the tractor (Mouazen et al., 2005). An AgroSpec mobile,
fibre type, vis–NIR spectrophotometer (Tec5 Technology for Spectrosco-
py, Germany) with a measurement range of 305–2200 nm was used to
measure soil spectra in diffuse reflectance mode. The sampling interval
of the instrument was 1 nm. A deferential global positioning system
(DGPS) (EZ-Guide 250, Trimble, USA) was used to record the position of
mobile measured spectra with sub-meter accuracy. Each scan consisted
of three spectra that were averaged in one spectrum representing about
1.2m travel distance. Outlier spectrawere visually detected and removed
from further analyses. These outlier spectra represented 2.5 and 4% out of
12,766 and 14,276 soil spectra collected fromHessleskewandHaggfields,
respectively. During the measurement at each line, 3 or 4 soil samples
were collected from the bottom of the trench and the sampling positions
were carefully recorded with a DGPS. The locations of soil samples were
selected to cover the soil variation within both fields. A total of 122 and
149 soil samples were collected during the mobile measurement form
Hessleskew and Hagg fields, respectively (Fig. 1). Measurements were
carried out in 2015 and 2016 for the former and latter fields, respectively,
pulling the sensor at 12 m gap between adjacent transects (Fig. 1).

2.3. Laboratory chemical and optical measurements

Each sample was divided into two parts; one part was dried for 24 h
at 105 °C and the other part was left fresh (wet). The dried soil sample
was analyses for total carbon (TC) according to the British Standard BS
7755 Section 3.8 (1995) using combustion method, which is identical
to ISO 10694:1995. Total nitrogenwas determined by the Dumasmeth-
od, where the soil samples are heated to 900 °C in the presence of
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