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A B S T R A C T

We present a contextual spatial modelling (CSM) framework, as a methodology for multiscale, hierarchical
mapping and analysis. The aim is to propose and evaluate a practical method that can account for the complex
interactions of environmental covariates across multiple scales and their influence on soil formation. Here we
derived common terrain attributes from multiscale versions of a DEM based on up-sampled octaves of the
Gaussian pyramid. Because the CSM approach is based on a relatively small set of scales and terrain attributes it
is efficient, and depending on the regression algorithm and the covariates used in the modelling, the results can
be interpreted in terms of soil formation. Cross-validation coefficient of determination modelling (R2), for
predictions of clay and silt increased from 0.38 and 0.16 when using the covariates derived at the original DEM
resolution to 0.68 and 0.63, respectively, when using CSM. These results are similar to those achieved with the
hyperscale covariates of ConMap and ConStat. As with these hyperscale covariates, the multiscale covariates
derived from the Gaussian scale space in CSM capture the observed spatial dependencies and interactions of the
landscape and soil. However, some advantages of CSM approach compared to ConMap and ConStat are i) a
reduced set of scales that still manage to represent the entire extent of the range of scales, ii) a reduced set of
attributes at each scale, iii) more efficient computation, and iv) better interpretability of the important cov-
ariates used in the modelling and thus of the factors that affect soil formation.

1. Introduction

The universal model of spatial variation (Matheron, 1971) re-
cognizes that all types of soil variation can be described, and modelled,
in terms of a deterministic component and a stochastic component (Eq.
1).

= + ′ + ′∗Z s Z s ε s ε( ) ( ) ( ) (1)

Where Z(s) is the soil property value, Z∗(s) is the deterministic part
of the model describing structural variation, ε′(s) is the stochastic part
of the model consisting of (apparently) random variation that may be
spatially correlated and ε′ is the spatially uncorrelated random noise
component.

Initial efforts in digital soil mapping (DSM) typically modelled ei-
ther the deterministic component using some form of regression against
environmental covariates, or the stochastic component using some form
of kriging. DSM largely adopted the CLORPT concept based on Jenny
(1941) in which soil properties were expected to be predictable in terms
of values for environmental covariates that represented the five factors
of soil formation (climate, organisms, relief, parent material and time).

McBratney et al. (2003) proposed the scorpan model for soil mapping as
an extension to CLORPT by explicitly accounting for space (or location,
n), to account for spatial dependency in the theoretical framework. Two
hybrid approaches, Regression Kriging (RK) (Neuman and Jacobson,
1984) and Geographically Weighted Regression (GWR) (Brunsdon
et al., 1996) permit joint modelling of environmental correlation and
spatial dependency. While Kriging is commonly used to deal with
spatial autocorrelation, GWR was developed to handle spatial non-
stationarity.

Landscape processes, and thus spatial dependence, result from
complex interactions of different soil forming factors, which are con-
nected with each other in nested hierarchies (MacMillan et al., 2004).
Consequently, pedogenesis is influenced by interactions between
landscape and environmental processes across multiple scales (Pike,
1988; Gerrard, 1981; Hole, 1978; Behrens et al., 2010a; Kerry and
Oliver, 2011; Viscarra Rossel, 2011). Because the geomorphic settings
interact with for example climate or parent material, or are the result of
other processes such as tectonics, the “geomorphic signature” of a
landscape (Pike, 1988) can often serve as their proxy. That is, surface
shape and context can be an indicator for parent material; elevation and
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aspect can indicate differences in temperature, precipitation and solar
insolation.

Due to the multiscale nature of environmental interactions of the
different processes, it is important to cover important ‘process scales’ in
spatial modelling (Behrens et al., 2010a; Behrens et al., 2014). For in-
stance, Viscarra Rossel (2011) produced fine spatial resolution digital
mapping of clay minerals across Australia and suggested that the de-
tailed expression of the minerals at different spatial scales was possible
because the different covariates used in the modelling exerted their
influence at the dominant scales that they represent. When all relevant
environmental covariates, which cover the process scales, are included
in the model, the stochastic component (ε′(s)) of the residuals can be
insignificantly small or spatially uncorrelated (Moran and Bui, 2002;
Behrens et al., 2010a; Behrens et al., 2014; Viscarra Rossel et al., 2015;
Hengl et al., 2017). This could be related to the (regression) algorithm
used, the availability and quality of the covariates, how well they re-
present the processes of soil formation and the complexity of the soil.

In many cases, not all relevant covariates covering the process scales
are available. However, additional relevant information can be derived
from the original covariates. One example is using a digital elevation
model (DEM) to derive terrain attributes. However, it is important to
extract descriptors at multiple scales and not only at the original local
scale, since there can be a mismatch between the spatial dependency of
a soil property or the scale of generalization of soil units and the terrain
attributes derived at a specific resolution (Bui et al., 1999).

Scaled versions of environmental covariates are typically extracted
using expanding convolution kernels, e.g. by increasing the spatial
neighborhood to derive terrain or by applying low-pass filter attributes,
or by reducing the resolution of covariates (e.g. Huber, 1994; Fels and
Matson, 1996; Wood, 1996; Behrens et al., 2010b). Both approaches
have been widely used and tested for DSM (e.g. Moran and Bui, 2002;
Grinand et al., 2008; Behrens et al., 2005; Behrens et al., 2010b; Smith
et al., 2006; Zhu et al., 2008; Drăguţ et al., 2011). However, these
multiscale mapping approaches typically only cover a relatively small
range of spatial scales and thus the relevant geomorphic signature
might not be fully derived. This limited range of scales used may be due
to a high computational demand for filter-based approaches with large
neighborhoods or to the production of visual artifacts related to dif-
ferent cell sizes.

Two previously described methods for deriving hyperscale covari-
ates are ConMap and ConStat (Behrens et al., 2010a; Behrens et al.,
2014). Both are designed to produce covariates that represent processes
at spatial scales ranging from the local scale to the supra-regional scale.
The covariates derived by ConMap are elevation differences from the
center pixel to each pixel in a sparse circular neighborhood, while
ConStat derives covariates that represent statistical measures of central
tendency, dispersion, and shape of the distribution within growing
sparse circular spatial neighborhoods. These hyperscale covariates are
then used as predictors in random forest regressions, although other
algorithms could also be used. Both ConMap and ConStat produce a
very large number of scales and predictors computed for each grid lo-
cation, which can easily grow to 100 scales and 1000 attributes per grid
cell respectively.

Another group of approaches, which can be used to extract scales
from covariates for DSM, consists of spectral analysis, wavelet trans-
forms, and empirical mode decomposition (Pike and Rozema, 1975;
Gallant and Hutchinson, 1996; Huang et al., 1996). Because, they allow
the decomposition of covariate data into specific scales, the resulting
scaled information can be used as additional predictors or as the basis
to derive scaled versions of derivatives such as terrain attributes
(Lashermes et al., 2007; Biswas et al., 2013b). In this respect, several
studies used 2D wavelet decomposition to analyze soil spatial variation
as well as to map soil properties based on covariates of different scales
or resolutions (Lark et al., 2003; Lark and Webster, 2004; Lark, 2007;
Mendonca-Santos et al., 2007; Taghizadeh-Mehrjardi et al., 2014;
Biswas et al., 2013a; Biswas et al., 2013b; Sun et al., 2017). These

studies either develop DSM models on single scales or resolutions, or
across a relatively small range of scales comparable to the range of
scales used in DSM approaches that employ expanding convolution
kernels (e.g. Behrens et al., 2010b), and often only for small areas.

Another important aspect of spatial modelling in DSM is the inter-
pretability of the models and the relevant pedogenetic processes
(Walter et al., 2006), which may be interpreted from the deterministic
modelling (Eq. 1) (cf. Jenny, 1941; Gerrard, 1981), particularly if the
algorithms used lend themselves to interpretation such as approaches
based on Decision Trees (Breiman et al., 1983; Quinlan, 1985). The
autocorrelated part of residuals (ε′(s)) (Eq. 1), if it exists, is more dif-
ficult to interpret in terms of pedogenesis. Hence, the advantages of
using decision tree methods with covariates that represent multi-scale
processes are that only the pure noise part of the predictive model (ε')
(Eq. 1) remains. The resulting deterministic models can be interpreted
in terms of soil genesis using analysis of feature importance and other
knowledge discovery tools (Behrens et al., 2014).

Good spatial modelling and mapping should i) capture and describe
spatial dependency, ii) be interpretable, and iii) be efficient to compute.
Here, we present a new contextual mapping and analysis approach that
uses the Gaussian pyramid scale space (Burt and Adelson, 1983). The
method creates a hierarchical pyramid of the covariate data (e.g. a
DEM) of decreasing spatial resolution by downscaling and then up-
scaling back to the original resolution. The idea is to cover the range of
scales available from the spatial extent of the covariate data and to use
all scales simultaneously in the spatial modelling. Together, the scale
specific terrain analysis and regression, enables variable importance
analysis and interpretability with relation to soil formation. We tested
the method with a small set of terrain attributes (slope, aspect and
curvature) derived from scaled versions of the DEM. However, the
method can be extended to include contextual information of other
covariates.

2. Material and methods

2.1. The Gaussian scale space

A Gaussian pyramid is a hierarchical, multiscale representation of
images, or gridded maps, based on smoothing and scaling (Burt and
Adelson, 1983). It is used in many image processing algorithms such as
image compression or in computer vision for scale-invariant feature
detection (Burt and Adelson, 1983; Adelson et al., 1984; Lowe, 2004).

In a Gaussian pyramid, the resolution is successively reduced by half
until only one pixel remains (Fig. 1). Hence, a matrix pyramid is a
dyadic sequence {Mi,Mi−1,… ,M0} of gridded datasets, where Mi has
the same dimensions and resolution as the original dataset. Mi−1 is
derived fromMi by reducing the cell count by one half.M0 is a matrix of
one pixel only (Sonka et al., 2014). This is accomplished by convolving
the matrix with a Gaussian blur filter, to avoid aliasing effects, followed
by a downscaling step where all even-numbered rows and columns are
removed. Iterating this process constructs the levels or octaves of the
pyramid. The finest scale corresponds to the resolution of the input
dataset. As the pyramid scales down to one pixel there is no further
coarser scale or octave possible. Hence, the coarsest scale is related to
the extent of the dataset. Thus, the Gaussian pyramid covers the entire
range of scales based on the extent of the dataset. This does not mean
that all possible scales are derived but that the extremes are covered.

Upsampling in a Gaussian pyramid approach is commonly required
to generate a Laplacian pyramid, which contains the relevant in-
formation for image compression and feature detection (Burt and
Adelson, 1983; Lowe, 2004). Instead of building a Laplacian pyramid,
we use upsampling to return the resolution of each Gaussian octave to
the original resolution of the DEM (Fig. 1). The purpose is to avoid scale
related artifacts in CSM, which would occur when combining maps of
different cell sizes. Technically, upsampling is done by injecting even
rows and columns into an octave. All new cells are set to zero. In a next
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