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Machine-learners used for digital soil mapping are generally trained using either data derived from field-ob-
served soil pits or from soil survey polygons - although no direct comparison of the accuracy resulting from
the two methods has yet to be undertaken. This study examined such a comparison over the Okanagan Valley
and Kamloops region of British Columbia where good quality soil pit and soil survey data were available. A stan-
dard set of environmental variables including vegetative, climatic, and topographic indices were used to predict
soil Great Groups in accordance with the Canadian System of Soil Classification. The pit-derived training dataset
was developed using n = 478 points from the British Columbia Soil Information System while the polygon-de-
rived training dataset was developed through random sampling of single-component soil survey map units
based on an area-weighted approach. In both cases, the training points were intersected with a suite of 18 envi-
ronmental covariates, reduced from 27 covariates using principal component analysis, and submitted to a ma-
chine-learner for predictions at a 100 m spatial resolution. Four single-model learners (CART, k-nearest
neighbor, multinomial logistic regression, and logistic model tree) and five ensemble-model learners (CART
with bagging, k-nearest neighbor with bagging, multinomial logistic regression with bagging, logistic model
trees with bagging, and Random Forest) were compared. Surfaces of prediction uncertainty were produced
using ignorance uncertainty and results were validated using a 5-fold cross-validation procedure. Predictions
made using polygon-derived training data were consistently higher in accuracy across all models where the Ran-
dom Forest model was the most effective learner with C = 61% accuracy when using pit-derived training data
and C=68% accuracywhenusingpolygon-derived training data. Comparing single-model and ensemble-learner
models, the bagging algorithm resulted in a 2–11% increase in accuracywhen using pit-derived training data. En-
semble-models allowed for the visualization of prediction uncertainty. This study provides further insight into
the use of legacy soil data and the development of training data for digital soil mapping.
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1. Introduction

The soil-environmental variables identified in Jenny (1941) codified
the concept of soil-environmental relationships, where easily measur-
able environmental properties could be used to predict soil properties.
In digital soil mapping (DSM), the environmental-correlation concept
(McKenzie and Ryan, 1999), later formalized within the scorpan
model (McBratney et al., 2003), takes spatial soil data and co-locates it
to readily available environmental data such as digital elevationmodels
(DEM) and remotely sensed data in order to form the training dataset
for a type of supervised learning. The relationships between soil and
environmental conditions are correlated through the fitting of a model
using machine-learning and/or geostatistical techniques where the

soil-environmental relationships are then used to predict the soil prop-
erties for areas that have not been sampled. Furthered with increasing
computational power, advancing remote sensing and GIS technologies,
and the availability of accurate soil-environmental data, the application
of the environmental-correlation concept has been applied for the
mapping of soil classes and attributes over progressively larger spatial
extents and data sizes (Chaney et al., 2016; Hengl et al., 2014, 2015;
McBratney et al., 2003; Mulder et al., 2011, 2016).

Within the DSM literature, training data for mapping categorical soil
properties has typically come from one of two sources: soil pit data or
soil polygon data that has been digitized from conventional soil survey
maps (Brungard et al., 2015; Heung et al., 2016). When using soil pit
data for mapping soil taxonomic units, geolocated soil profile informa-
tion is either recovered from a legacy soil database (Bui et al., 2006;
Hengl et al., 2014) or based on field data that were collected for specific
studies (Brungard et al., 2015; Rad et al., 2014). The use of pit data is
particularly useful for situations when there is limited soil survey data
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available, when there is an existing database of field observations, or
when the spatial resolution of existing soil surveys is too coarse.

When using polygon data for model training purposes, the generic
procedure typically involves the generation of training points within
polygons where values from environmental covariates are extracted.
This method has been used to map properties such as surficial geology
and soil parent material (i.e. Bui and Moran, 2001) but has most com-
monly been used to map soil taxonomic units (i.e. Bui and Moran,
2001, 2003; Collard et al., 2014; Grinand et al., 2008; Odgers et al.,
2014; Subburayalu and Slater, 2013; Subburayalu et al., 2014). The
methods for generating training points have varied amongst studies –
some of which included an area-weighted approach where the number
of randomly generated sample points for each class were proportional
to the class' areal extent (i.e. Moran and Bui, 2002); a by-polygon ap-
proachwhere a set number of training points were randomly generated
within each polygon (i.e. Odgers et al., 2014); equal-class sampling
where the number of randomly generated training points for each
class were equal (i.e. Moran and Bui, 2002); and a sampling approach
that integrated expert knowledge in the selection of points (i.e.
Bulmer et al., 2016). Studies that have compared someof thesemethods
have typically identified an area-weighted approach to produce more
accurate predictions, relative to other methods, as the spatial extent
and variability of the largest classes were better represented within
the training data (Moran and Bui, 2002; Heung et al., 2014, 2016).

The main advantages of the polygon method include the ability for
users to select an arbitrarily large sample size, which is beneficial for cap-
turing more of the landscape's variability and the multivariate feature
space of a categorical variable (Moran and Bui, 2002; Heung et al., 2014,
2016); furthermore, this approach has also been shown to be effective
for the refinement and improvement of existing maps through the disag-
gregation of complex map units (Collard et al., 2014; Häring et al., 2012;
Holmes et al., 2015; Odgers et al., 2014; Subburayalu et al., 2014). A con-
cern with this approach has typically been related to the issue of map
scale and the variability and purity within individual map units at given
scales (Lin et al., 2005). For instance, in Heung et al. (2016), it was visually
observed that as the map scale decreased from one region of the study
area to another, there was a noticeable decrease in the diversity of soils
that were predicted. Furthermore, soils developed from local-scale collu-
vial andfluvial processeswere poorly predicted. The relationship between
soil survey scale and the accuracy of predictions has also been observed in
studies such as Bui and Moran (2003); in addition, that study also identi-
fied that the accuracy of predictions varied greatly evenwhen soil surveys
that were mapped at similar scales were used as training data due to
differing survey methods and the time given to complete the survey.

Although these two approaches have commonly been used in the
DSM literature, studies such as Brungard et al. (2015), Heung et al.
(2016), and Lacoste et al. (2011) have identified a potential research
gap where these approaches have yet to be directly compared using
the same suite of machine-learners and environmental covariates over
a study area. As such, the primary objective of this study was to address
the comparison between pit-derived and polygon-derived data as train-
ing data for predicting soil classes at the Great Group level of the taxo-
nomic hierarchy, based on the Canadian System of Soil Classification
(Soil Classification Working Group, 1998), for the Okanagan-Kamloops
region of British Columbia. Here, the pit-derived training data were
obtained from legacy soil pit data taken from the British Columbia Soil
Information System (BCSIS) (Sondheim and Suttie, 1983) and the
polygon-derived training data were derived from legacy soil survey
polygons using the framework provided in Heung et al. (2014). An iden-
tical suite of 27 environmental covariates and nine machine-learning
algorithms for classification were tested on each of the two training
datasets and as such, differences in the results could be constrained to
the differences in training data. Secondary objectives included the
comparison of nine machine-learning algorithms: four single-model
learners and five ensemble-model learners. Validation of the predictions
was performed using soil pit data and a cross-validation procedure.

2. Methodology

2.1. Study area

The study areawas chosen due to the availability of both soil pit data
and soil survey polygon data of high reliability and spatial quality, as
well as a relatively high sampling density in the case of pit data. The
study area represents a 47,350 km2 portion of south-central British
Columbia (Figure 1) and is located at approximately 49.0°N to 51.1°N
latitude, 117.5°W to 120.8°W longitude, with an elevation range of
280–2720 m.

There is a great diversity of ecosystem types within the study area
with the Interior Douglas Fir (IDF) and Ponderosa Pine (PP)
biogeoclimatic zonesmaking upmuchof the valleys and the Bunchgrass
(BG) zone at the lowest elevations. The IDF is the largest zone in the val-
leys,with amean annual temperature of 1.6–9.5 °C, and 300–750mmof
precipitation, 15–40% of which falls as snow (Hope et al., 1991b). The
zone is largely covered by mature stands of Douglas Fir (Pseudotsuga
menziesii) although grasslands occur in some places. Soils here are pri-
marily Luvisols and Brunisols, with Chernozems occurring in the grass-
lands. Due to the basic volcanic parent material and low leaching rates
in the arid environment, the soils are considered to have a high nutrient
status (Hope et al., 1991b). The PP zone occurs below the IDF zone, and
is the driest and warmest forested zone in British Columbia, with a
mean annual temperature of 4.8–10 °C and 280–500 mm of precipita-
tion. Soils here are much the same as in the IDF zone, consisting mostly
of Chernozems and Brunisols. The lowest elevations, along valley
bottoms of major rivers in the region, are occupied by the BG zone
and is characterized by its warm, dry climate with sparse shrubs and
grass cover, and Chernozemic soils (Hope et al., 1991a).

Higher elevations are characterized by the forested Montane Spruce
(MS) and Interior Cedar Hemlock (ICH) zones with Engelmann Spruce
Subalpine Fir (ESSF) and Interior Mountain Heather Alpine (IMA)
zones located at the highest points (Ketcheson et al., 1991). The ICH
zone has a mean annual temperature of 2.0–8.7 °C, and 500–1200 mm
of precipitation of which 25–50% of it falls as snow. Humo-Ferric
Podzols dominate at drier areaswhile Ferro-Humic Podzols andGleysols
occur in wetter areas. The MS zone occurs at slightly higher elevations,
leading to lower mean annual temperatures of 0.5–4.7 °C and
380–900 mm of precipitation. The soils of the MS zone are mostly of the
Brunisolic and Luvisolic orders formed from clayey volcanic parent
material; however, Humo-Ferric Podzols can be found in areas that are
moist with coarse parent materials (Hope et al., 1991c). The ESSF and
IMA zones occur only at the highest elevations in the northeast portion
of the study area, and represent only a small proportion of its total area.

2.2. Environmental covariates

27 environmental variables were derived from remote sensing, cli-
mate and digital elevation model (DEM) data (Table 1). In order to de-
crease multi-collinearity between the variables and computational
demand, principal component analysiswas performed on the topograph-
ic and vegetation data. The analysis resulted in a total of 18 covariates,
which were then scaled in order to convert the covariate values into
distributions with similar ranges – a procedure that is recommended
for machine-learners (such as k-nearest neighbors) where the decision
boundaries for classes are defined based on the distance in feature
space between observed and unobserved points.

2.2.1. Topographic indices
Topographic indices were derived from a 100 m spatial resolution

DEM of the study area, obtained from HectaresBC.org – a provincial re-
pository of freely available environmental data. Consecutive smoothing
was applied to theDEM in order tominimize the effects of spatially non-
correlated noise on the calculation of topographic indices, in the form of
three consecutivemean filters of 3 × 3, 3 × 3, and 5 × 5 pixels (Heung et
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