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Soil depth has played a key role in the development of soil survey, implementation of soil-specific management
and validation of hydrological models. Generally, soil depth at field scale is difficult to map due to complex inter-
actions of factors of soil formation at field scale. As a result, the conventional sampling schemes tomap soil depth
are generally laborious, time consuming and expensive. In this study,we presented, tested and evaluated ameth-
od to optimize the sampling scheme tomap soil depth to petrocalcic horizon atfield scale. Themethodwas tested
with real data at four agricultural fields localized in the southeast Pampas plain of Argentina. The purpose of the
method was to minimize the sample dataset size to map soil depth to petrocalcic horizon based on ordinary
cokriging, five calibration sample sizes (returned by Conditioned Latin hypercube –cLHS-), and apparent electri-
cal conductivity (ECa) or elevation as variables of auxiliary information.
The results suggest that (i) only 30% of samples collected on a 30-m grid are required to provide high prediction
accuracy (R2 N 0.95) tomap soil depth to petrocalcic horizon; (ii) an independent validation dataset based on 50%
of the samples on a 30-m grid is adequate to validate the most realistic accuracy estimate; and (iii) ECa and ele-
vation, as variables of auxiliary information, are sufficient to map soil depth to petrocalcic horizon. The method
proposed provides a significant improvement over conventional to map soil depth and allows reducing cost,
time and field labour. Extrapolation of the results to other areas needs to be tested.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The spatial distribution of soil depth affects the spatial dynamic of
water storage capacity, runoff generation, subsurface flow, nutrients
availability and crops yield (Stieglitz et al., 2003). For that reason, soil
depth has played a key role in the development of soil survey, imple-
mentation of soil-specific management and validation of hydrological
models (Tesfa et al., 2009). However, the spatial dynamic of soil depth
at field scale is difficult to predict due to that the complex interactions
of factors of soil formation at field scale such as topography, climate,
parentmaterial and land use (Jenny, 1941; Tesfa et al., 2010). As a result,
the conventional sampling schemes to map soil depth are generally la-
borious, time consuming and expensive. Evidently, accurate and inex-
pensive sampling schemes are needed to map soil depth at field scale.

Terrain attributes obtained from digital elevation models and proxi-
mal soil sensors data are sources of inexpensive auxiliary information
that have been used to map soil depth. For example, Tesfa et al.
(2009) reported statistical models to map soil depth based upon the

relationship between soil depth and terrain attributes. Ziadat (2010) re-
ported that the modelling depth soil-landscape relationships using ter-
rain attributes was a promising approach to map soil depth. On the
other hand, Boettinger et al. (1997) and Bork et al. (1998) determined
that electromagnetic induction data are potentially a powerful, inex-
pensive and quick tool to map soil depth. These examples suggest that
terrain attributes and proximal soil sensor data are optimal sources of
auxiliary information tomap soil depth. However, there is little consen-
sus on the optimal sampling scheme tomap soil depth, especiallywhere
spatial soil depth pattern is highly variable.

The availability of auxiliary information is important to optimize
sampling schemes (Hengl et al., 2004; Minasny and McBratney, 2006;
Shaner et al., 2008) and to serve as ancillary variable in the local predic-
tion of a soil property when using hybrid interpolation techniques such
as cokriging (Vašát et al., 2010). This interpolation technique is used in
cases where there are two or more spatially interdependent variables
and incorporates those interdependent variables into spatial interpola-
tion to obtain high prediction accuracy with limited sample data (Wang
et al., 2013). Generally, cokriging needs two previous processes to im-
prove prediction accuracy. The first process is a selection of themost im-
portant variables of auxiliary information characterized by high
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interdependencewith the variable to predict. At this respect, Behrens et
al. (2010) proposed that using a variables selection technique based on
Random Forest (RF), could help to reduce prediction model complexity
while decreasing computation time and improving prediction accuracy.
The second process is a selection of a model-based sampling scheme
that allows quantifying of the spatial dependence and provide good
area coverage for reliable prediction (Simbahan and Dobermann,
2006). According to that, several studies of digital soil mapping (DSM)
have demonstrated that Conditioned Latin Hypercube sampling
(cLHS) (Castro Franco et al., 2015; Minasny and McBratney, 2006;
Mulder et al., 2013) could help to minimize the variance of the predic-
tion error of geostatistical interpolation, with limited sample data. Al-
though cokriging, RF and cLHS are being successfully applied as
prediction models of several soil properties, their potential to optimize
the sampling scheme to map soil-depth at field scale has been
underexplored due to their novelty.

The southeast Pampas plain of Argentina, one of themost important
cropping regions of the world, have about four million hectares that are
underlain by a petrocalcic horizon which limits the soil depth (Pazos
and Mestelan, 2002). Consequently, soil depth is the key factor that
limits crop yield (Sadras and Calviño, 2001). At present, expensive and
laborious sampling schemes are used to map soil depth at field scale.
However,most of agriculturalfields in the southeast Pampas plain of Ar-
gentina have wide availability of inexpensive auxiliary information be-
cause precision agriculture technologies have been rapidly adopted in
the last decades (Swinton and Lowenberg-Deboer, 2001). In this con-
text, the potential use of this auxiliary information to optimize the sam-
pling schemes to map soil-depth at field scale requires to be evaluated
and quantified.

The objective of this study was to present, test and evaluate a meth-
od to optimize the sampling scheme tomap soil depth to petrocalcic ho-
rizon at field scale, based on inexpensive auxiliary information, RF as
algorithm of importance variables selection and cLHS as model-based
sampling scheme. The integration of these algorithms offers a new ap-
proach to optimize the sampling scheme, to identify themost important
variables of auxiliary information and to overcome the limitations of
conventional methods. Also, the parameterization of cokriging, RF and
cLHS is very simple and computationally slighter than other algorithms.

2. Materials and methods

2.1. Agricultural fields

The location of the fields used in this study is shown in Fig. 1. These
fields were selected because they represent the variability of elevation,
landscape position and spatial variability of soil depth usually found in
the southeastern Pampas. The current crop rotations in all fields include
corn, soybean or sunflower in summer and wheat or barley in winter
(Costa et al., 2015). Specifically, the fields are located in the geological
province locally termed “Sierras Septentrionales” in the southeast of
Buenos Aires province of Argentina. In this zone, the loess deposits are
from the Late Holocene and Pleistocene (Blanco and Stoops, 2007).
The soils are classified as Subgroups Typic Argiudoll and Petrocalcic
Argiudoll; Family fine, illitic, thermic (Soil Survey Staff, 2014). Table 1
shows the area and composition of soil mapping unit for each field.

The southeastern Pampas plain of Argentina has a frost-free period
that extends from October to May. The mean annual temperature is
14.8 °C. It has a humid and subhumid hydric regime (Thornthwaite,
1948). Themean annual precipitation is about 756mm. The rain regime
is (i) rainy from October to March, (ii) moderately rainy in April, May
and September, and (iii) scarcely rainy from June to August (Costa et
al., 2015).

2.2. Auxiliary information measurement

ECa and elevation were used as auxiliary information to optimize
sampling to map soil depth at field scale.

ECa measurements were collected at two different dates (July 18th,
2008 in Field 4 and June 23rd–30th, 2011 in Fields 1, 2 and 3) using a
Veris® 3100 soil electrical conductivity sensor (Veris Technologies
Inc., Salina, KS, USA). The accumulated rainfall reached 612 mm from
January to July 2008,whereas only 211mmwere accumulated fromDe-
cember to June 2011. However, a rainfall of 8.5 mm occurred on June
22nd 2011. Precipitation datawere providedbyAgrometeorological De-
partment of National Institute for Agricultural Technology of Argentina
(INTA-CEI Barrow) from the nearest weather recording station for each
field.

The coulter electrodes of the Veris® 3100 are configured as a
Wenner array, an arrangement commonly used for geophysical resistiv-
ity surveys. In this sensor, the system records ECa inmSm−1 by electri-
cal resistivity at a shallow depth (0–30 cm, ECa_30 cm) and a deep
depth (0–90 cm, ECa_90 cm) (Moral et al., 2010). Veris® 3100 was
pulled through the field by a pick-up truck. ECa measurements were
made along parallel transects approximately 20 m apart on the surface
of each agricultural field. An advance GPS Surveying instrument GPS
Trimble® GeoXT™ handheld with submeter accuracy was used to
georeferenced the ECa measurements. Latitude, longitude, ECa_30 cm
and ECa_90 cm data were recorded in an ASCII text file and transferred
to GIS software for further analysis. For more details of ECa measure-
ments with Veris 3100® see Corwin and Lesch (2003), Corwin and
Lesch (2005) and Allred et al. (2008).

Elevation wasmeasured simultaneously with ECa, using an advance
differential GPS Surveying instrument GPS Trimble®R3 (Trimble Navi-
gation Limited, CA, USA), which is equipped with a GPS receiver, anten-
na and rugged handheld controller. Elevation data were post-processed
with Trimble Business Center software V3.5 to produce a digital eleva-
tion model of spatial resolution of 10 m, in each field.

Experimental variogramswere computed todescribe the spatial var-
iation of ECa and elevation following the procedure proposed by Diggle
and Ribeiro (2007).

The adjusted experimental variogram was used to interpolate ECa
and elevation by ordinary kriging in each field. The R package “geoR”
was used to conduct the geostatistical interpolation (R Development
Core Team, 2015). Finally, a 10 × 10 m grid square size was chosen for
output maps.Fig. 1. Location of the study fields in the southeast Pampas of Argentina.
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