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A B S T R A C T

Digital soil mapping (DSM) involves the use of georeferenced information and statistical models to map pre-
dictions and uncertainties related to soil properties. Many remote regions of the globe, such as boreal forest
ecosystems, are characterized by low sampling efforts and limited availability of field soil data. Although DSM is
an expanding topic in soil science, little guidance currently exists to select the appropriate combination of
statistical methods and model formulation in the context of limited data availability. Using the Canadian
managed forest as a case study, the main objective of this study was to investigate to which extent the choice of
statistical method and model specification could improve the spatial prediction of soil properties with limited
data. More specifically, we compared the cross-product performance of eight statistical approaches (linear,
additive and geostatistical models, and four machine-learning techniques) and three model formulations
(“covariates only”: a suite of environmental covariates only; “spatial only”: a function of geographic coordinates
only; and “covariates + spatial”: a combination of both covariates and spatial functions) to predict five key forest
soil properties in the organic layer (thickness and C:N ratio) and in the top 15 cm of the mineral horizon (carbon
concentration, percentage of sand, and bulk density). Our results show that 1) although strong differences in
predictive performance occurred across all statistical approaches and model formulations, spatially explicit
models consistently had higher R2 and lower RMSE values than non-spatial models for all soil properties, except
for the C:N ratio; 2) Bayesian geostatistical models were among the best methods, followed by ordinary kriging
and machine-learning methods; and 3) comparative analyses made it possible to identify the more performant
models and statistical methods to predict specific soil properties. We make modeling tools and code available
(e.g., Bayesian geostastical models) that increase DSM capabilities and support existing efforts toward the
production of improved digital soil products with limited data.

1. Introduction

Spatially explicit soil information is required to assess potential land
use, predict vulnerabilities and implement biogeochemical models
forecasting the impact of human activity and climate change on ter-
restrial ecosystems, as well as on the services they provide (Adhikari
and Hartemink, 2016; Folberth et al., 2016). Considerable efforts have
been made by the research community to harmonize and define
common specifications of soil data sets from different origins (Arrouays
et al., 2014). These efforts have led to the creation of large soil pedon
databases that facilitate the mapping, monitoring and modeling of
ecosystem processes at multiple spatial scales, making it possible to
predict vegetation shifts (Kuhn et al., 2016) and changes in ecosystem
productivity (Maire et al., 2015). Key outcomes of these advances
culminated in the release of soil raster products at continental (Hengl

et al., 2015) and global (Hengl et al., 2014) scales, together with
quantitative estimates of uncertainty associated with predicted soil
properties. The availability of soil quantitative estimates is a significant
step toward integrating soil indicators into the assessment of ecosystem
function and vulnerability (Folberth et al., 2016).

Digital soil mapping (DSM) involves the use of numerical methods
to fit and validate statistical models on georeferenced soil information
(dependent variables) using environmental covariates (independent
variables) that represent soil-forming factors, and to map predictions
and their uncertainty at a specified spatial resolution over a focal study
area. Environmental covariates are obtained from various sources, in-
cluding remote sensing products and digital elevation models
(McBratney et al., 2003). When detailed expert-based soil maps are
available, techniques of spatial disaggregation of polygon information
are often used (Bui and Moran, 2001; Lamboni et al., 2016). However,
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over large regions, and more typically in forested regions, expert-based
soil maps are often unavailable and the scorpan model approach (see
McBratney et al., 2003), which matches environmental covariates with
soil point data (pedons), is commonly used. A key challenge in DSM is
that there is almost always a shortage of soil pedon data, which may
lead to low model accuracy and/or misrepresentations of predicted soil
attributes (Ahrens, 2008). How to make the maximum use of sparse
data is thus a recurrent challenge in soil science. At the same time, this
challenge offers a growing opportunity to develop new statistical ap-
proaches that improve soil predictive mapping.

Canada's forests, which cover over 390 million ha of land and re-
present 10% of the world's forest cover, are representative of this si-
tuation since only limited soil pedon database are available at the na-
tional level. Over the last decades, the pool of available numerical
methods and statistical models combined with an increase in computing
power and data availability have tremendously boosted DSM cap-
abilities with limited data (McBratney et al., 2003; Grunwald, 2009;
Brevik et al., 2016). Various new modeling tools are now freely avail-
able to predict and map soil types as well as continuous or discrete soil
properties. The quality of these predictive soil maps, however, remains
highly variable and depends of the interplay among four main key
components: 1) the availability and quality of the data for both soil
profiles and environmental covariates; 2) the inherent variation in
nature complexity and heterogeneity of any focal soil property across
spatial scales and soil depth; 3) the specification of statistical models
(e.g., the choice of covariates, with linear vs non-linear effects, with
simple vs interaction effect terms, with hierarchical structures or not,
with the inclusion or not of a spatial component); and 4) the choice of
statistical framework (e.g., Bayesian vs frequentist), statistical method
and algorithm to fit these models (see Fig. 1), hereafter referred as
‘statistical methods’.

Machine-learning techniques, in particular, have become very

popular in predictive modeling (Hastie et al., 2009; Kuhn and Johnson,
2013), especially in DSM where numerous studies use random forests
(Grimm et al., 2008), boosted regression trees (Grinand et al., 2008), k-
nearest neighbors (Mansuy et al., 2014), Cubist (Rizzo et al., 2016),
support vector machines (Were et al., 2015), and artificial neural net-
works (Behrens et al., 2005). In addition to the choice of statistical
method, the choice of statistical models (model specification) includes
the use of non-spatial vs spatially explicit models. When the geo-
graphical locations of sample plots are recorded, spatially explicit
models are often used to account for spatial autocorrelation in the data
or in model residuals (McBratney et al., 2003; Dormann et al., 2007;
Hengl, 2009; Beale et al., 2010; Banerjee et al., 2014), which often
improves the accuracy of predictions as well as the predictive perfor-
mance of the models (Beguin et al., 2012).

Although every spatial statistical method has its intrinsic way of
modeling spatial correlation structure in the data (Li and Heap, 2014),
the following are the most common in practice: 1) using additional
covariates that are parametric or non-parametric functions of the
sample geographic coordinates, such as in trend surface analyses with
linear or additive models (Dormann et al., 2007), in spatial filtering
regression (e.g., Moran Eigenvectors; Dray et al., 2006) or in auto-
covariate regression (Dormann et al., 2007); 2) using spatial covariance
structure in the variance-covariance matrix with parametric function
(e.g., variograms), such as in generalized least squares (GLS) models
(Dormann et al., 2007) or in regression-kriging (Hengl et al., 2004); 3)
using weighted matrices of interactions among neighboring sites, such
as in conditional (CAR) and simultaneous (SAR) autoregressive models
(Banerjee et al., 2014); and 4) using Bayesian hierarchical models
where effects of the covariates, spatial effects and nugget effects are
combined in an additive model (Banerjee et al., 2014). Bayesian
methods may be computationally heavy, but there has been much re-
cent development that makes them readily usable for data sets of rea-
listic sizes of an order of 10,000 points and bigger (Sun et al., 2012;
Lindgren and Rue, 2015).

While great efforts by the soil mapping community have led to
standardized technical specifications regarding the spatial entity, the
assessment of soil properties to be predicted, and the handling of un-
certainties in DSM (Arrouays et al., 2014), less work has been done to
compare the relative performance of a range of statistical methods and
model specifications (e.g., spatial vs non-spatial) across multiple soil
properties. Most DSM studies (but see Heung et al., 2016) use one or a
few statistical approach(es) (Poggio et al., 2013; Nawar et al., 2015),
typically with one type of model specification to analyze specific soil
data sets, which often makes unclear the extent to which the combi-
nation of particular statistical approach and model formulation influ-
ences the outcome.

The main objective of this study was therefore to investigate to what
extent the choice of statistical methods and model specification could
improve the spatial prediction of forest soil properties with sparse soil
data. More specifically, we compared the cross-product performance of
eight statistical methods (linear, additive and geostatistical models, and
four machine-learning techniques) and three different model specifi-
cations (“covariates only”: model fitted with a suite of environmental
covariates only; “spatial only”: model fitted with only a spatial com-
ponent derived from geographic coordinates of the plots; and “covari-
ates + spatial”: model fitted with both covariates and a spatial com-
ponent) to predict five key forest soil properties (thickness and C:N
ratio in the organic layer as well as carbon concentration, percentage of
sand, and bulk density in the top 15 cm of the mineral horizon).

2. Material and methods

2.1. Study area

The study area covers 290 million ha of managed forests across
Canada and extends from 52° to 138° West and from 42° to 60° North

Fig. 1. Conceptual framework showing the interrelationships among the four main
components that influence predictive errors in digital soil mapping when using statistical
approaches. Getting the lowest prediction errors between observed and predicted soil
properties on independent data is the main objective of digital soil mapping.
Conceptually, the causes of prediction errors can be divided into four main components:
(1) the quality and availability of the data (e.g., sample size, quality, spatial resolution
and precision); (2) nature complexity or the level of heterogeneity in soil properties; (3)
the choice of statistical framework (e.g., Bayesian vs frequentist), statistical method and
algorithm, hereafter referred as ‘statistical methods’; and (4) the choice of statistical
model (e.g., spatial vs non-spatial, linear vs non-linear effects, simple vs interaction effect
terms). Each of these components can act alone (bold arrows) or interact with other
components (dashed arrows) to shape the accuracy of digital soil maps.
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