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A B S T R A C T

Understanding how soil variability changes with spatial scale is critical to our ability to understand and model
soil processes at scales relevant to decision makers. The compilation of large legacy data sets has opened up new
possibilities to model spatial variability at the continental or even global scale. Using the National Soil Site
Collation (NSSC) dataset of Australia we created empirical variograms for sand and clay fraction at extents from
1 km to continental. The NSSC dataset is highly spatially clustered; a typical feature of legacy datasets. This leads
to lumpy artefacts in the variograms. To reduce this lumpiness we employed grid based declustering. We used
the declustered empirical variograms to calculate the Hausdorff Besicovitch Dimension – a unitless measure of
spatial roughness. We first fit a power model to each declustered variogram and calculated the Hausdorff
Besicovitch dimension at each modelled scale. This allowed us to assess the roughness or variability at each
modelled extent, however this assessment was somewhat arbitrary and showed that roughness depends on the
extent. We have proposed a new model that allows us to calculate the Hausdorff Besicovitch dimension con-
tinuously across all extents. The conceptual basis of this model moves away from a multi-fractal framework
typically used by soil scientists. It allows us to describe spatial variability or stochasticity as a continuous
function of spatial separation. Both our new model and the continental scale variograms of texture emphasise the
high degree of short range variability in soil texture. Empirical variograms indicate that around 50% of spatial
variability occurs at< 10 km, and 30% at< 1 km. Spatial variability of soil texture increases with depth
consistently across all modelled extents. Beyond extents of around 100 km, the Hausdorff Besicovitch Dimension
remains relatively stable. Soil spatial variability is highly stochastic at fine scales however it changes gradually
with extent and scale rather than abruptly.

1. Introduction

Our ability to understand and manage the soil resource is dependent
on the scale at which we can observe and model soil characteristics and
processes. As soil scientists, one of our key challenges is to produce
information about soil quality and processes at a resolution and extent
useful for decision makers (Lark, 2005; Malone et al., 2013). It may
often be necessary to do this without the collection of additional data
(Malone et al., 2013; Pongpattananurak et al., 2012). Modelling soil
properties is challenging because a soil property at any given location is
the result of a complex interplay of environmental and management
factors over time. While these are in theory deterministic processes, the
outcomes of these complex soil forming processes are often so un-
predictable that they appear random (Heuvelink and Webster, 2001;
Webster, 2000). The relative dominance and interactions of these dif-
ferent factors will vary with location and with the scale of observation
(Heuvelink and Webster, 2001; Lark, 2011). This applies to both the
deterministic and the ‘random’ component of soil variability. Capturing

variability at relevant spatial scales is critical to production of useful
models and maps, but is not a simple task. Without a priori knowledge
of patterns in soil spatial variability it is easy to design a soil survey that
misses important spatial variation either by sampling with spacing that
is too broad or an extent that is too narrow. The importance of this issue
has led to much work on the efficient design of soil surveys across
multiple scales (Lark, 2005, 2011; Pettitt and McBratney, 1993;
Webster et al., 2006). Even with these efficient methods, multiscale
sampling strategies tend to be both time consuming and expensive and
not always possible. It may be possible for the soil scientist to shape
their expectations about the likely variability of soil at different scales
from existing literature, but generally speaking our understanding of
the variability of the majority of soil properties at different spatial
scales is still limited.

The availability of continental-scale soil data allows new avenues
for approaching the question of how soil variability changes with scale.
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• We use legacy data to calculate empirical variograms at spatial ex-
tents ranging from continental to 1 km by varying bin size and ex-
tent. This illustrates the utility of the empirical variogram as a tool
for exploiting large legacy datasets in investigation of scaling pat-
terns (Sections 2.2, 2.3, 2.4 and 3.1).

• We describe two methods for calculating the spatial roughness for
the quantitative assessment of spatial variability (Sections 2.5, 2.6,
2.7 and 2.8) and apply these methods to the empirical variograms
we have calculated (Sections 3.2 and 3.3). This allows us to expand
on the inferences we have drawn about changes in variability across
scales (Sections 3.4, 3.5, 3.6, and 3.7).

2. Methods

2.1. Conceptual overview

Collaborative efforts to build large scale digital soil maps such as
GlobalSoilMap have led to the creation of consolidated databases of soil
information. These databases represent a significant resource for em-
pirical characterization of soil spatial variability. Our idea was to take
advantage of the inherent flexibility in the experimental variogram to
create soil variograms at a range of spatial scales using compiled legacy
data. By adjusting the bin size and extent of each variogram we ad-
justed the spatial scale so that each variogram captures a different
magnitude of spatial variability. Creation of variograms across a range
of spatial scales allowed the characterization of patterns of spatial
variability with scale. We fit power curves to the empirical variograms
across a range of modelled scales. The exponent parameter from the
fitted power curve was used to calculate the Hausdorff Besicovitch
Dimension or D value, a unitless measure for the roughness of an object.
Burrough (1983) used this dimension to compare spatial variability
between environmental properties. The ‘variogram method’ used by
Burrough, 1983 is rooted in the concept of Multifractals (regions of
similar variability separated by ‘zones of transition’). We introduce a
differentiation-based method for estimating this dimension con-
tinuously across changing extents. Because the underlying conceptual
framework for our model is distinct from the Multifractal framework we
replace the term Hausdorff Besicovitch Dimension with the more gen-
eral ‘roughness index’. Because the roughness index is dependent upon
the shape of the variogram but not the units, it provides a simple but
useful quantitative tool for assessing spatial variability between prop-
erties and between scales. We calculated the ‘roughness index’ across
different spatial extents and at several different depths using both
methods.

2.2. NSSC soil texture data

The soil texture data used in this analysis was compiled to support
the Australian contribution to the GlobalSoilMap (Grundy et al., 2015).
A collaboration of state and national government agencies and some
universities worked together to produce the National Soil Site Collation
or NSSC (Searle, 2014). The database includes geo-located soil ob-
servations collected by research and government agencies from the
1930s onwards. The NSSC is a composite of data from a variety of
sources therefore it does not have a unified sampling design and the
NSSC dataset reflects the research priorities of the different data col-
lecting institutions at different times. The dataset is heavily focused in
agricultural regions and includes areas of high density sampling and
sparse sampling (Fig. 1). The complete database contains information
on several soil properties including percentage clay and percentage
sand fraction from almost 16,000 soil profiles. Percentage sand and clay
fractions from this database are used in this study.

Observations in the NSSC database were not taken at consistent
depths. Data was normalized using the generalized equal area spline
depth function (Malone et al., 2009). Soil depth intervals were selected
in line with the GlobalSoilMap depth intervals (0–5 cm, 5–15 cm,

15–30 cm, 30–60 cm, 60–200 cm, Arrouays et al., 2014). Prior to ap-
plying the spline depth function, locations with no top soil measure-
ment were discarded and locations with multiple observations or
overlapping depths were deleted. The number of observations that were
used at each interval are shown in Tables 1 and 2 below. The spline
function does not return values at depths below the available data. The
NSSC database contains more observations for the topsoil than the
subsoil. This results in fewer data points observations available at lower
depth intervals.

Summary statistics for percentage Clay and Sand fraction are pre-
sented in Tables 1 and 2 below.

2.3. Experimental variograms — modelling at multiple scales

We calculated experimental variograms using Matheron's (1963)
method-of-moments estimator (Eq. (1)).
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In Eq. (1) (above) the theoretical relationship between separation
distance (lag or h) and semivariance, γ, is estimated by the function

̂ hγ ( ). M(h) is the number of paired comparisons at a particular lag (h). z
(xj) and z(xj + h) are the values of the property Z at places xj and xj + h
separated by lag h. It is common practice for the lag h to cover a spe-
cified distance interval.

Use of method of moments to estimate semivariograms has been
criticized for bias and for subjectivity (Lark, 2000). However, bias de-
creases as sample size increases (Oliver and Webster, 2014). Vario-
grams are typically estimated based on tens to hundreds of data points,
while this study uses several thousand. This significantly reduces pro-
blems of bias. Another reason to favour the use of Method of Moments
in this context is the difficulty associated with using either REML (Re-
stricted Maximum Likelihood) or MCMC (Markov Chain Monte Carlo)
methods on very large datasets. In addition model-based geostatistics
require a priori establishment of a variogram model.

When using method of moments, the practitioner is required to
select both bin size and extent. In relation to Eq. (1), the bin sizes de-
termine the interval over which the term h spans. The intrinsic sub-
jectivity of this method provided a convenient method for modelling
variograms at different scales. Fixing the number of bins at 1000, the
maximum extent of the experimental variogram was gradually reduced.
As the extent decreased, the bin size decreased proportionally. Com-
binations of bin size and extent are displayed in Table 3.

2.4. Experimental variograms — improving fit using spatial declustering

It has been established that empirical variograms calculated from
spatially clustered data can be biased or lumpy (Emery, 2007; Marchant
et al., 2013; Richmond, 2002). This makes them less suitable for
modelling variograms and for kriging because in clustered situations
the variability at different lags is unequally characterised. As discussed
above, the NSSC dataset used in this paper has been compiled from a
variety of government agencies and research bodies, and reflects the
priorities of those bodies at the time of data collection. As such, the
dataset is heavily clustered. Empirical variograms calculated with the
method-of-moments exhibit strong lumpiness at spatial extents> 40
km (you can see this lumpiness illustrated in Fig. 7). This is consistent
with the pattern noted by Marchant et al. (2013) when using a similar
dataset.

Methods for reducing this bias have been suggested by Emery
(2007), Richmond (2002) and Marchant et al. (2013). We favour the
last method as, unlike the first two, it is dependent only upon the spatial
location of the data and not upon the values of the data themselves. It is
also easily computed and has intuitive appeal.

We use Marchant et al. (2013) modified declustering method of
moments estimator (Eq. (2)) to recalculate the empirical variograms at
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