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Conventional methods of monitoring salt accumulation in irrigation schemes require regular field visits to collect
soil samples for laboratory analysis. Identifying areas prone to salt accumulation by means of geomorphometry
(i.e. terrain analyses using digital elevation models (DEMs)) can potentially save time and costs. This study eval-
uated the extent to which DEM derivatives and machine learning (ML) algorithms (k-nearest neighbour, support
vector machine, decision tree (DT) and random forest) can be used for predicting the location and extent of salt-
affected areas within the Vaalharts and Breede River irrigation schemes of South Africa. In accordance with local

Iggﬂgds' management policies, salt-affected areas were defined as regions with soil electrical conductivity (EC) values
Hydrology >4 dS/m. Two DEMs, namely the one-arch second Shuttle Radar Topography Mission (SRTM) DEM and a
Digital terrain analysis photogrammetrically-extracted digital surface model (DSM), were used for deriving the derivatives. Wetness in-
Geomorphometry dices as well as hydrological and morphometric terrain analysis techniques were used to generate predictive var-

Machine learning
Geostatistics

iables. For comparative purposes, the predictive variables were also used as input to regression modelling and
kriging with external drift (KED). Thresholds were applied to the regression models and KED results to obtain
a binary classification. EC values based on in situ soil samples were used for model development, classifier train-
ing and accuracy assessment.
The results show that KED achieved the highest overall accuracy (OA) in Vaalharts (79.6%), whereas KED and ML
(DT) showed the most promise in the Breede River (75%). The findings suggest that the use of elevation data and
its derivatives as input to geostatistics and ML holds much potential for monitoring salt accumulation in irrigated
areas, particularly for simulating sub-surface conditions. More work is needed to investigate the potential of
using ML and DEM-derivatives, along with other geospatial datasets such as satellite imagery (that have been
shown to be effective for monitoring surface conditions), for the operational modelling of salt accumulation in
large irrigation schemes.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Salinity is a term used to describe the amount of salt in soil or water
(Mcghie and Ryan, 2005). For the purpose of this study, salinity refers to
the accumulation of soluble salts in the soil due to natural processes or
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human activities (Al-Khaier, 2003). The way in which salts move and
accumulate in soils can be affected by poor drainage (waterlogging), ir-
rigation practices, clearance of vegetation and the reshaping of the land-
scape through earth works (Mcghie and Ryan, 2005). In large quantities,
salts limit the normal growth of plants and the negative impacts of salt
accumulation on crop production is a global concern (Metternicht and
Zinck, 2003).

An estimated 18% of the soils in South African irrigation schemes is
salt-affected or waterlogged (Backeberg et al., 1996). Although this per-
centage is relatively small compared to Argentina (34%), Egypt (33%),
Iran (30%), Pakistan (26%) and the United States of America (23%)
(Ghassemi et al,, 1995), only 13.7% of South Africa's land area is suitable
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for irrigated agriculture (Department of Agriculture, Forestry and
Fisheries, 2013). Proactive measures to reduce the effect of salt accumu-
lation are therefore needed to prevent loss of productive agricultural
land. Preventative measures include careful consideration of crop
water requirements and irrigation water quality, as well as frequent
monitoring of salt levels in soils (Shainberg and Shalhevet, 1984).

Conventional methods of monitoring salt-affected soils require reg-
ular field visits and laboratory analyses, which is often not viable for fre-
quent monitoring of large areas. Although there has been an increase in
the use of proximal (in situ) sensors (Viscarra Rossel et al., 2011), such
instruments normally monitor soil conditions within relatively small
ranges (within 2 m). This necessitates the incorporation of a large num-
ber of sensors to effectively monitor extensive areas at the required (i.e.
within field) spatial resolutions. Owing to its ability to observe large
areas on a regular, timely basis, remote sensing has also been used as
an alternative method for monitoring salt accumulation (Abbas et al.,
2013; Akramkhanov et al., 2011; Dwivedi, 1997; Dwivedi et al., 1999;
Elnaggar and Noller, 2010; Sulebak et al., 2000). However, a major chal-
lenge of using remotely sensed imagery is its inability to effectively
monitor subsurface processes that do not directly influence the spectral
responses of the topsoil (Vermeulen and Van Niekerk, 2016).

The use of geomorphometry - terrain analysis using digital elevation
data (Pike, 2000) - to model areas that are susceptible to salt accumula-
tion has produced good results. Elnaggar and Noller (2010) found a sig-
nificant correlation between soil electrical conductivity (EC), and
elevation, slope and wetness indices. Similarly, Sulebak et al. (2000)
identified a strong, significant correlation (R?> = 0.8) between terrain
data (slope, aspect and profile curvature) and soil moisture using a step-
wise regression modelling (RM) approach. Sulebak et al. (2000) ob-
served that low slope gradients were associated with high soil
wetness values and Akramkhanov et al. (2011) found significant corre-
lations (as determined by stepwise multiple regression) between soil
EC and environmental factors such as distance to drainage, profile cur-
vature, slope and groundwater table depth. Taghizadeh-mehrjardi
et al. (2016) found wetness indices, the multi-resolution valley bottom
flatness index and elevation to be the most important predictors of soil
salinity.

Geostatistics have widely been used in salt accumulation studies
(Eldeiry and Garcia, 2009, 2008; Gallichand et al., 1992; Juan et al.,
2011; Li et al., 2007; Taghizadeh-Mehrjardi et al., 2014; Utset et al.,
1998), particularly for interpolating salt accumulation from soil sam-
ple analysis results. Kriging, a generic term used to refer to a group of
generalized least-squares regression algorithms, has been shown to
produce good results, as it provides linear unbiased estimates and
weights surrounding sample points to account for clustering
(Gallichand et al., 1992; Hengl et al., 2007). Several variations of
the kriging algorithm are available, but co-kriging (CK), universal
kriging (UK), regression kriging (RK) and kriging with external
drift (KED) seem to be the most popular for salt accumulation
modelling (Baxter and Oliver, 2005; Bishop and McBratney, 2001;
Eldeiry and Garcia, 2008; Gallichand et al., 1992; Li et al., 2007;
Motaghian and Mohammadi, 2011; Taghizadeh-Mehrjardi et al.,
2014).

CK, the simplest of these algorithms, is a multivariate extension of
kriging that allows for the incorporation of auxiliary data to improve
predictive capacity (Wackernagel, 2010). CK is suitable when only a
few auxiliary variables are being considered and when these vari-
ables do not cover all sample locations (Hengl et al., 2003). UK, RK
and KED are mathematically equivalent algorithms that make use
of auxiliary variables to compute the kriging trend model
(Pebesma, 2006). UK models the trend using coordinates only,
whereas KED makes use of other auxiliary variables for estimating
the trend function. RK calculates the drift and residuals separately,
after which the results are summed (Hengl et al., 2007). Gallichand
et al. (1992) found CK to produce better EC models compared to
moving average methods, while Eldeiry and Garcia (2008) observed

that RK produced a stronger model compared to those generated
with RM. Performing RK, Taghizadeh-Mehrjardi et al. (2014) ob-
served a moderate significant correlation (R> = 0.49) between soil
EC and the evaluated variables, with wetness indices, geomorpho-
logical surfaces (rock outcrops), principal components, catchment
aspect and valley depth being the main predictors. Li et al. (2007)
showed that CK and RK produced better results than ordinary kriging
(OK), emphasising the importance of incorporating ancillary data
(e.g. terrain analysis derivatives) in the interpolation of EC. Compar-
ing OK, RK and KED, Bishop and McBratney (2001) found KED to be
the best predictor of soil EC, while Motaghian and Mohammadi
(2011) demonstrated that KED produced more accurate results in
modelling soil saturated hydraulic conductivity than RM, OK, CK
and RK. Similarly, Baxter and Oliver (2005) found that KED produced
superior results (compared to CK and RK) in predicting potentially
available nitrogen within agricultural fields.

In contrast to geostatistical methods, machine learning (ML) algo-
rithms use samples of known identity (categories) to classify instances
of unknown identity (Campbell, 2006; Rees, 2001). Various ML algo-
rithms, including k-nearest neighbour (kNN) (Coopersmith et al.,
2014; Nemes et al., 2006, 1999), artificial neural networks
(Aitkenhead et al., 2012; Behrens et al., 2005), support vector machine
(SVM) (Kovacevic et al., 2010; Li et al., 2013), decision tree (DT) (Bui
and Moran, 2001; Jafari et al., 2014) and random forest (RF) (Heung
et al,, 2014), accompanied by auxiliary variables, have been employed
to predict soil properties and classes. Evans et al. (1996a) produced rea-
sonable accuracies (>60%) for mapping saline soils with decision trees
(DTs). Similar observations were made by Evans et al. (1996b). Also
employing DTs for salt accumulation mapping, Elnaggar and Noller
(2010) achieved very accurate results (60% and 98.8% for unaffected
and salt-affected soils respectively) and attributed it to the algorithm's
ability to incorporate a large number of disparate predictors in the
model building process. DTs are, however, prone to overfitting (i.e. pro-
ducing models that perform well on the training data, but poorly on
general untrained data), while more powerful machine learning algo-
rithms such as SVM and RF have been shown to be more robust
(Rodriquez-Galiano et al., 2012a; Rodriquez-Galiano et al., 2012b;
Myburgh and Van Niekerk, 2014).

Although much work has been done on combining ML algorithms
and remotely sensed imagery for mapping salt-affected areas (Abbas
et al., 2013; Abbas and Khan, 2007; Abood et al., 2011; Dwivedi and
Sreenivas, 1998; Elnaggar and Noller, 2010; Muller and Van Niekerk,
2016; Vermeulen and Van Niekerk, 2016), such data can only observe
surface conditions. The use of digital elevation models (DEMs) (and its
derivatives) as input to ML algorithms for delineating salt-affected
areas is of particular interest, as it would better represent subsurface
conditions. However, we are not aware of any published studies in
which ML algorithms were compared to other established methods
(e.g. geostatistics) when only terrain variables were used as input. In ad-
dition, very little information is available on the impact of DEM proper-
ties on salt accumulation modelling.

This study aims to evaluate the use of several ML algorithms
(kKNN, SVM, DTs and RFs) for identifying areas in irrigated fields
that are salt-affected. The main purpose is to determine the effec-
tiveness of these methods for producing simple binary maps of
salt-affected and unaffected areas so that they can be used as a scop-
ing mechanism to prioritize more detailed (in situ) investigations
and to discard unaffected areas from further consideration. The ML
results are compared to binary classifications applied to models gen-
erated by two established methods, namely RM and KED. The
Vaalharts and Breede River irrigation schemes in South Africa
(Figs. 1 and 2) were chosen as study sites. The landscapes of the
two areas are very different, with Vaalharts mostly consisting of
flat terrain, while Breede River is located in a mountainous region.
This allowed for a better comparison and evaluation of the
techniques.
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