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A B S T R A C T

Landform delineation has long been used in digital soil mapping to infer soil-relevant information. While its
potential as an environmental variable in soil parameter modeling has been investigated for various automated
landform delineations, little research has been invested into the relationship between the delineation of land-
forms by algorithms based on digital terrain models (DTM) and the perception of landforms by the soil surveyor
during field work. Five Open Source automated landform classification algorithms and a support vector machine
classifier based on single terrain parameters are investigated with regard to their ability to replicate topographic
position, at two different scales, as described by surveyors for soil profile sites in the Alpine environment of
South Tyrol. We also analyse how the variation of parameters and cell size affects the distribution of the
computed landforms. While a clear trend regarding grid cell size and window size can be observed with regard to
the difference between macro and meso scale topographic positions, the overall classification accuracy regarding
the different topographic position classes was less promising. Although some automated classifications partly
resemble the surveyor's classification, a considerable number of issues remain to be investigated in order to
explain the lack of reproducibility of surveyor position, some of which are linked to the Alpine environment of
the study area. These include the dominance of the backslope position, the objectivity of the surveyor in rugged
terrain under forest cover, and the fuzzy nature of classifying topographic position, especially in steep terrain. By
applying a forward stepwise feature selection procedure for a model based on single terrain parameters, we show
that at macro scale a regional terrain parameter (topographic wetness index) and curvatures at a coarse DTM
resolution of 50 m are the most influential in distinguishing topographic position, whereas at meso scale it is the
topographic position index (TPI) with a search radius of just 70 m combined with slope gradient. This study is an
important first step towards consolidating topographic perception during field survey and digital terrain ana-
lysis, which, at least in Alpine terrain, still requires more investigation.

1. Introduction

Topography has always been acknowledged as an important control
on the formation and, hence, distribution of soil. Schaetzl (2013) notes
that by solely discussing a soil based on the description of a pit face, a
soil surveyor disregards the possibly most influential factor in its for-
mation - the landscape. Consequently, soil description guidelines for
soil classification schemes require the characterization of landform and
topography of soil profile sites. For instance, when following the FAO
guidelines for soil description, topography is described using the four
categories major landform, relative position of the site within the
landscape, slope form and slope angle (FAO, 2006). Similarly, the
Austrian (Nestroy et al., 2011) as well as the German soil classification

and mapping manuals (Ad-hoc-Arbeitsgruppe Boden, 2006) require the
measurement of slope angle and a description of the landform on which
the soil profile site is located at three different scales, specifically
macro, meso and micro, relative to the surrounding 100 to 500 m, 50
to 100 m and 5 to 10 m, respectively (Englisch and Kilian, 1999). The
various landform and slope position descriptions are usually performed
by the surveyor while at location, supported by topographic maps and
possibly aerial photographs, and based on expert rule sets as well as the
surveyor's mental soil landscape model.

Readily available digital terrain models (DTMs) of increasing re-
solution have led to research into landform modeling and the seg-
mentation or stratification of DTMs into landform units. Approaches
vary from expert-based rule sets to completely automated landform
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classifications, from supervised to unsupervised classifications, and in-
clude classifications with crisp as well as fuzzy borders. The output
units may be attributed with the names of landforms as mapped by a
surveyor, but can also represent elementary land units that adhere to
certain geometric constraints. Similar to the information required of the
soil surveyor (slope angle and landform), the input variables for DTM-
based landform classifications range from local terrain variables, such
as slope and curvature, to regional variables like catchment area, which
further describe a profile site's position in the landscape.

An early example of the local terrain variable approach was pro-
posed by Dikau (1988), who combined plan and profile curvature as
well as the radius of curvature to create a map of form elements.
Pennock et al. (1987) describe a similar landform element classification
based on plan and profile curvatures. Addressing the problem of ap-
propriate scale, Wood (1996) presented an approach based on slope and
multiple curvature calculations to model 6 morphometric features, and
added the possibility to calculate the terrain parameters at different
scales, i.e. at different window sizes. A similar analysis with regard to
curvature and slope was performed by Blaszczynski (1997). Minàr and
Evans (2008) proposed a concept of elementary landforms on the basis
of homogeneous areas of altitude and its derivatives, separated by lines
of discontinuity.

Another branch of landform classifications applies not only local,
but also regional terrain attributes (Gallant and Wilson, 2000) that
include information on the surrounding area of a central pixel. Schmidt
and Hewitt (2004) extended Dikau's form elements by means of fuzzy
classification and introduced landscape context into the classification
scheme by implementation of the TOP HAT approach (Rodriguez et al.,
2002) to additionally distinguish between valleys and hills. Similarly,
MacMillan et al. (2000) proposed a landform element classification
based on heuristic rules and fuzzy logic. Therein, the landform elements
of Pennock et al. (1987) are classified based on a semantic input model,
and landscape context is added via terrain parameters that describe
each cells slope position relative to its watershed. Klingseisen et al.
(2008) present a landform classification based on classic local terrain
attributes as well as elevation-related regional attributes. The slope
class is further segmented using breakpoints in the slope profile. In a
similar approach, Matsuura and Aniya (2012) also applied breakpoint
detection to create subdivisions of the slope class. Hollingsworth et al.
(2006) is an example for an application of regional terrain parameters
in landform classification that can be linked to the hydrological regime,
as they use the Static Wetness Index in their decision tree-based land
unit mapping approach. Weiss (2000) proposed an automated landform
classification by combining the topographic position index (TPI), which
compares the elevation of a pixel to that of surrounding pixels, at large
and small scale. Involving the surrounding landscape at a given search
radius, r.geomorphons (Jasiewicz and Stepinski, 2013) represents a
classification based on line-of-sight calculations and pattern recogni-
tion.

The previously mentioned landform classification approaches have
in common that the resulting classes are attributed names, which have
specific implications regarding the description or characterization of
each landform element. A different approach is unsupervised classifi-
cation, wherein an algorithm separates the grid cells into classes that
may or may not be afterwards provided with a name attribute related to
landforms. Instead of organising a map according to certain heuristic
rules, unsupervised classifications create groups of grid cells that are
similar with regard to certain terrain parameters, but the group
boundaries are not constrained by any existing classification system.
Irvin et al. (1997) compared the results of a crisp and a continuous
clustering algorithm with regard to manually delineated landforms.
While Adediran et al. (2004), Arrell et al. (2007) and Burrough et al.
(2000) similarly applied clustering of terrain derivatives with regard to
landforms, Moravej et al. (2012) based their clusters not on the terrain
attributes but on their first principle components. A different un-
supervised approach is that of Iwahashi and Pike (2007), who applied a

nested-means partitioning algorithm to delineate terrain types or sur-
face-form classes.

Yet another approach to landform delineation is derived from ob-
ject-based image analysis (OBIA), its principles applied to geographic
information science are described by Blaschke et al. (2014). It differs to
the previously described approaches, as in a first step homogenous
areas with regard to certain terrain parameters are segmented, which
can later be aggregated and classified into landform elements. Drǎgut
and Blaschke (2006) classified landform elements similar to the con-
cepts of Dikau (1988) and Pennock et al. (1987) by applying OBIA to a
group of terrain parameters which has been used in many landform
classification attempts, i.e. slope, plan and profile curvature, and ele-
vation. Gerçek et al. (2011), Mashimbye et al. (2014) and Kringer et al.
(2009) provide further examples of the application of OBIA to landform
delineation, the latter for use in soil mapping procedures.

Geomorphologic questions may be the main subject of interest for
automated landform classification, nonetheless the relationship be-
tween landforms and soil has long been of strong scientific interest,
consequently leading to research into classifying landforms for soil
mapping purposes (Schmidt and Hewitt, 2004; Herbst et al., 2012;
Hughes et al., 2009; Barringer et al., 2008). MacMillan et al. (2000)
well illustrate how different landforms can be interpreted in terms of
soil formation and erosion, and the catena concept in soil science
(Schaetzl, 2013) shows the importance of topographic position in
pedogenesis. Many have highlighted the importance of topography as a
soil forming factor especially in mountainous areas (Geitner et al.,
2011b; Herbst et al., 2012). Consequently, it seems important, espe-
cially for future research, to consolidate the perception of topographic
position in field soil survey on the one side and digital terrain analysis
on the other, in order to advance the understanding of the inter-
dependencies between soil and topography.

The aim of this study is to increase the understanding of the per-
ception of landscape by soil surveyors. This is done by testing various
landform classification algorithms with regard to their suitability to
emulate the mental soil-landscape model of soil surveyors, especially
with regard to the concept of topographic position. This testing is
conducted using support vector machine (SVM) classification (Cortes
and Vapnik, 1995), a supervised learning algorithm which can effi-
ciently perform non-linear classification. A resulting map of topo-
graphic position shall serve as an additional support for soil surveyors
during field work. For each classification method we also give an
overview of the influence of parameter thresholds and window sizes on
the number and distribution of computed landform classes to allow
better understanding of how these algorithms classify DTMs. Whereas
past publications presenting new landform classification approaches
commonly measure the performance of their classification by visual or
statistical comparison with existing thematic maps (or classifications
performed by human interpretation of photo- or topographic maps for
validation purposes) or by correlation with metric parameters such as
soil depth, the authors deem it important to analyse the classifications
performed during field work. Consequently, in this study we compare
computed classifications to the topographic positions of numerous soil
profile sites in South Tyrol (Italy) as mapped by soil surveyors. The
Alpine environment of this research area presents an additional chal-
lenge to automated landform classification, as most previous studies
have concentrated on areas suited for agriculture, thus having sig-
nificantly less distinguished elevation differences as well as slope gra-
dients.

The investigated algorithms were restricted to supervised classifi-
cations implemented in the readily available Open Source geographic
information systems (GIS) GRASS GIS (GRASS Development Team,
2017) and SAGA GIS (Conrad et al., 2015). Although some classifica-
tions have been compared with the results of different algorithms, and
Barka et al. (2011) compared a number of automated landform classi-
fication algorithms with regard to correlation with soil and forest units,
to our knowledge there has been no systematic comparison to point
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