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With the rapid development of digital soil mapping it is not unusual to find several maps for the same soil prop-
erty in an area of interest. We applied two standard methods of model averaging for combining two regional
maps and a Europeanmap of topsoil texture in agricultural land for the Region Centre (France). The twomethods
formodel ensemblewere theGranger-Ramanathan (G-R) and the Bates-Granger (B-G). A calibration datasetwas
used for fitting the coefficients of the G-R model, and for calculating a global variance: prediction error ratio
which was then used to re-scale the weights of the B-G model. The prediction performance of the three primary
maps and the two ensemble maps was compared with an independent validation dataset consisting on 100 ob-
servations from the French soil monitoring network. The prediction accuracy of the ensemble models improved
only for clay in comparison to the primary maps (ΔR2 = 0.02–0.06, ΔRMSE = −1.56–−4.97 g kg−1). Overall,
the G-Rmodels obtained smaller RMSE and greater bias than B-G, and G-R estimated better the prediction uncer-
tainty. The dissimilarities between themethods for estimating the prediction variance and non-optimal estimat-
ed uncertaintieswere important limitations for the B-Gmodels despite applying a global correction factor for the
prediction variances. The results suggested that both the calibration and validation datasets should represent the
patterns of spatial variation and range of values of the soil property for the prediction space. Nonetheless, model
ensemble methods proved to be useful for merging maps with different types of datasets, spatial coverage, and
methodological approaches.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The expansion of digital soil mapping (Grunwald et al., 2011) and
the increasing interest on data sharing often result in the availability
of multiple digital soil maps for the same area, each of themwith differ-
ent qualities (e.g., resolution, extent, modeling approach, uncertainty).
Initiatives like SoilGrids (Hengl et al., 2014) and GlobalSoilMap (GSM)
(Arrouays et al., 2014) pursue producing soil maps at global extent
and making them freely available in the Internet. Other organizations
create maps at continental (Panagos et al., 2012), national (Poggio
et al., 2010; Odgers et al., 2012; Adhikari et al., 2013; Viscarra Rossel
et al., 2015; Mulder et al., 2016), or regional extent (Padarian et al.,

2012; Vaysse and Lagacherie, 2015). However, potential end-users
may have difficulties choosing between the available digital soil maps
for an area of interest, especiallywhen eachmaphas specific advantages
and disadvantages. At the same time, modelers and land-use managers
request predictions of soil propertieswith the highest possible accuracy.
In this context, it is worthy investigating the applicability ofmethods for
combining existing predictions and their improvement of prediction
accuracy.

Model ensemble or model averaging has been proposed for improv-
ing prediction accuracy when raster maps of soil properties are readily
available (Malone et al., 2014), and can be especially useful when
these maps have been produced at different scales. The premise is that
the new model will be at least as good as any of the individual models,
using all available information efficiently (Diks and Vrugt, 2010). In
some cases model averaging may be the most effective way of combin-
ing soil datasets requiring different treatment of the data due to their
spatial support (e.g., georeferenced soil profiles vs. polygon based infor-
mation) (Heuvelink and Bierkens, 1992; Malone et al., 2014), some
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methods are relatively easy to implement, plus it provides a single map
to end users. It allows putting in common the efforts of researchers that
used different approaches to answer the same question, enhancing col-
laboration between regional, national, and international teams. Model
averaging techniques are widely used for hydrological (Diks and
Vrugt, 2010; Najafi et al., 2011) and climate modeling (Benestad,
2002; Min and Hense, 2006; Reichler and Kim, 2008), yet examples
for mapping soil properties are not as numerous (Heuvelink and
Bierkens, 1992; Malone et al., 2014; Padarian et al., 2014; Clifford and
Guo, 2015). Heuvelink and Bierkens (1992) applied the Bates-Granger
method (1969) for combining information from a soil map with point
observations, and found that the combined map had greater accuracy
than either of the primary maps alone (i.e., soil map and kriging of
point observations). Malone et al. (2014) compared several averaging
methods for merging a regression kriging map and disaggregated soil
maps and, albeit modestly, improved the prediction accuracy for all
studied depths. Clifford and Guo (2015) applied adaptive gating for av-
eraging soil property rasters, which performed better than the Bates-
Granger and regression based approaches.

France has several active programs for soil research and monitoring
integrated in the French Group of Scientific Interest in Soil (GIS Sol). In
addition there is a large record of soil data from all the soil surveys
and monitoring projects carried by the French National Institute of Ag-
ricultural Research (INRA) since the 1950s (Saby et al., 2014). The aim
of GIS Sol is to characterize the spatial distribution of soil properties
and soil types and to monitor the status of French soils. As a result,
there are multiple products at national and regional scale, traditional
soil maps (Arrouays et al., 2004) and digital soil maps for different soil
properties (Vaysse and Lagacherie, 2015; Lacoste et al., 2016; Mulder
et al., 2016), including soil texture (Ciampalini et al., 2014, Román
Dobarco et al.,2016). However, soil data from different programs are
not always used together for digital soil mapping. In addition, the
European Commission implemented a topsoil sampling survey in paral-
lel to the LandUse and Cover Area frame Statistical survey (LUCAS), and
produced digital soil maps of topsoil physical properties for Europe
(Ballabio et al., 2016).

Soil texture is amaster soil property that influences important phys-
ical, chemical and ecological processes like water infiltration and supply
(Mills et al., 2006), biogeochemical cycling (Austin et al., 2004), reten-
tion of pollutants (Jacobson et al., 2005; Li et al., 2015), and soil biodi-
versity (Silva et al., 2012). Multitude of models and pedotransfer
functions include texture data as input to predict other soil properties
and related processes [soil water capacity (Reynolds et al., 2000), soil
organic carbon and nutrients (Meersmans et al., 2008; Glendining
et al., 2011), risk of pollutants leaching to groundwater (Bah et al.,
2011), crop production (Gijsman et al., 2007)]. Therefore, accurate soil
texture maps are required for reducing the uncertainty associated to
these models and providing more precise and accurate spatial predic-
tions (Kværnø et al., 2007; Guillod et al., 2013), which would especially
benefit farmers and land managers working on environmental protec-
tion, crop productivity, soil management and hydrological planning
(Adhikari et al., 2013; Akpa et al., 2014; Zhao et al., 2009).

The objective of this studywas to combine threemaps of topsoil tex-
ture in Region Centre (France) – two regional maps and a European
map- with two standard methods for model ensemble and to assess
the improvement of prediction accuracy for agricultural land. The ap-
plied methods for model averaging were respectively the Granger-
Ramanathan (1984) and the Bates-Granger (1969).

2. Materials and methods

2.1. Study area

Region Centre is located in the Middle Loire basin and has a surface
of 34,151 km2 (Fig. 1). Its relatively flat topography (0–500melevation)
is traversed by the Loire River and several tributaries, and the elevation

softly increases towards the south in proximity to the Massif Central.
The climate is continental oceanic with an average annual temperature
of 11.4 °C and a mean annual precipitation below 800 mm (Joly et al.,
2010). Agriculture is themain land use, dedicatedmostly to the produc-
tion of cereal, oleaginous and protein crops (72% of agricultural area)
(Agreste, 2011). The principal soil types are Luvisols (33.8%), Cambisols
(15%), Leptosols (11.9%), Fluvisols (10.6%), and Podzols (10.6%)
(Ciampalini et al., 2014) according to the World Reference Base for
Soil Resources classification (IUSS Working Group WRB, 2014).

2.2. Primary maps

There were three available maps of soil texture for Region Centre
(France) produced with different modeling approaches and soil data-
bases: i) the French soil mapping and inventory program (Ciampalini
et al., 2014), ii) the French soil test database (Román Dobarco et al.,
2016), and iii) the Land Use and Cover Area frame Statistical survey
(Ballabio et al., 2016) (Fig. 2). For the three maps, the reference texture
data used to fit the different models was previously transformed with
the additive log ratio (alr-transform) (Aitchison, 1982) as it has been
proposed for the spatial prediction of compositional data like soil parti-
cle size fractions (Odeh et al., 2003; Lark and Bishop, 2007). The alr-
variables (i.e., sandalr and clayalr) were back-transformed directly to
sand, silt, and clay through the alr inverse transform (Lark and Bishop,
2007) prior to model ensemble. The characteristics of the three model-
ing approaches and their products are briefly explained:

i. Ciampalini et al. (2014) predicted soil texture for the Region Centre
following GSM specifications (Arrouays et al., 2014). They produced
predictions for the depth intervals 0–5, 5–15, 15–30, 30–60, 60–100,
and 100–200 cm, at 3-arc-second (~90 m) resolution using data
from 2487 soil profiles and 8718 horizons from the French soil map-
ping and inventory program (Inventaire Gestion et Conservation des
Sols: IGCS) and environmental covariates in a regression kriging ap-
proach. In the IGCS program, sampling was based on soil surveyor
expertise and mainly devoted to characterize soil mapping units.
The coordinates of soil profiles are known with an accuracy ranging
from 5 to 25 m. To estimate the soil texture on the depth intervals
according to the GSM specifications, the measured values were in-
terpolated using quadratic splines (Bishop et al., 1999; Malone

Fig. 1. Situation of Region Centre in France.
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