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A B S T R A C T

Soil class maps are useful representations of the landscape distribution of holistic soil functions. However these
are often only available as generalized classes at small cartographic scales. One reason is that allocating a soil
profile to a class in most current soil classification system requires laboratory determination of many diagnostic
soil properties. The advantage of reflectance spectroscopy along with the development of spectral libraries can
provide a relatively low-cost solution to this problem. Reflectance spectroscopy has demonstrated its ability to
rapidly predict soil physio-chemical properties; however prediction accuracy varies among soil properties. When
properties predicted with different accuracies are used to substitute for traditional laboratory determinations in
allocating a soil profile to a class, the resulting reliability of the allocation is questionable. The objective of this
research is to explore whether the soil properties predicted by reflectance spectroscopy can be used to correctly
allocate soil profiles into soil taxa at different hierarchical levels. Two hundred and six soil profiles were
allocated to eight Orders, 12 Suborders, 23 Groups and 49 Subgroups according to Chinese Soil Taxonomy, with
the help of ten soil properties predicted by spectra using ten-fold cross-validated PLSR modelling. The overall
allocation accuracy at Order, Suborder, Group and Subgroup level was 98.5%, 98.5%, 87.7% and 76.0%
respectively. These results show that soil reflectance spectroscopy can assist in allocation of profiles. When
predicted soil properties with varying accuracy are used for soil allocation, propagation of prediction errors and
model uncertainties must be considered. We propose the use of multiple indicators (RPD, confidence intervals,
comparison of RMSE and threshold requirements) to evaluate the allocation results.

1. Introduction

As holistic indicators of soil “personality” and the result of definite
pathways of pedogenesis, soil classes remain a focus of interest by
agencies which are dealing with soil survey, soil databases and soil
quality assessment (Grunwald, 2009). However, in many areas soil class
maps are only available as generalized classes at small cartographic
scales. For example, in China the most detailed nationwide soil map is
at the scale of 1:1 million, as a generalization of the second national soil
survey of China (1979–1994) (Shi et al., 2004). Soil maps at finer scales
are needed to support different applications such as agricultural
production, land evaluation, and land use planning. Despite the rapid
development of soil sensors, most soil surveys are still following the
procedures of purposive sample site selection, pit digging, field
observation, soil sampling, laboratory analysis of soil properties and
soil allocation by classifiers. Properly allocating a soil profile in all

modern soil classification systems requires the laboratory determina-
tion of many diagnostic soil properties to navigate the soil classification
keys. Where funds or relevant measurement techniques are constrained,
only a few profiles can be sampled and often only some soil properties
can be measured.

Thus, cost-effective methods are needed. The most promising has
proven to be reflectance spectroscopy and the development of spectral
libraries (Viscarra Rossel et al., 2016). Reflectance spectroscopy has
demonstrated its ability to rapidly predict soil physio-chemical proper-
ties (Viscarra Rossel et al., 2006). However the prediction accuracy
varies among soil properties (Soriano-Disla et al., 2014), due to the
intrinsic spectral characteristics of the target property, the type of
regression models, the calibration data size, and the specificity of the
study area. Much research has been devoted to improving the predic-
tion accuracy of the target properties (Gogé et al., 2014; Guerrero et al.,
2014), but there is often an apparent limit to prediction accuracy. For
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example, decreased prediction accuracy was reported for very high soil
organic carbon (SOC) contents (organic soils) due to spectral saturation,
and the prediction performance of SOC was influenced by the presence
of high level of iron contents (Stevens et al., 2013) due to spectral
feature interference.

These variable prediction accuracies of soil properties then propa-
gate through the allocation process. Since, for better or worse, mono-
thetic soil classification systems use rigid numerical limits (Webster,
1968), this raises the question of how much imprecise property
predictions affect allocation to soil classes. Soil classifiers or soil
mappers are more concerned whether these predicted properties can
assist in correct soil allocation, rather than the numerical prediction
accuracy of different models. Thus, there is a gap between “prediction
accuracy of soil properties by spectra” and “allocation accuracy to soil
classes”. If reflectance spectroscopy can be proved to assist in soil
allocation with sufficient accuracy, this should help improve the
efficiency of soil classification as part of soil survey.

Research has been reported on using soil spectra and classifiers
(e.g., logistic regression, neural networks) to directly allocate soil
profiles to soil classes (Vasques et al., 2014; Zeng et al., 2016a)
determined by traditional allocation of a training set of soil profiles.
This direct method is straightforward and utilizes only spectral
information. However, the disadvantage of such a machine learning
method is that it is a “black box”, making it difficult to interpret the
relationship between spectra and soil classes. In addition, there are
likely serious misallocations of soil profiles due to the presence of
“similar soil, different spectra” or “different soil, similar spectra”. An
allocation requires many steps that do not depend on laboratory results,
e.g., thickness of horizons and soil structure. So this direct method may
be applicable in limited geographic areas with extensive training
samples, but not in more general cases.

All modern soil classification systems are semi-quantitative (prop-
erty and morphology based) monothetic diagnostic systems, in which
soil profiles with properties falling within the same set of property
ranges are allocated to the same class. Thus soil classifiers are more
concerned about whether the properties can be predicted within the
required range or threshold rather than the prediction precision as
such. For example the threshold for SOC content is an average 6 g kg−1

weight for separating Mollic from Ochric epipedons in most soils in
(USA) Soil Taxonomy (Soil Survey Staff, 1999), Chinese Soil Taxonomy
(CST) (Cooperative Research Group on Chinese Soil Taxonomy, 2001),

and the World Reference Base for Soil Resources (WRB) (IUSS Working
Group, 2006). Therefore, if the confidence limits for SOC do not cross
this limit, the classifier can safely allocate the profile to the appropriate
diagnostic horizon, and from then to the appropriate soil class.

The objective of this research is to determine to what extent the soil
properties predicted by reflectance spectroscopy can be used to
correctly allocate soil profiles into soil taxa at several categorical levels
(Order, Suborder, Group and Subgroup) according to CST as a
representative of a typical modern semi-quantitative monothetic hier-
archical classification system. Since reflectance spectroscopy can only
partially assist in soil classification, this study is based on the following
premise that: for soil properties or morphological features or ancillary
environmental information which cannot be predicted by reflectance
spectroscopy, e.g. soil structure, soil moisture regime, soil temperature
regime etc., we take these as available information for allocation of soil
profiles. The second objective of this study is to determine how to
evaluate the reliability of the allocation results when the predicted soil
properties with varied accuracy are used for soil allocation.

2. Material and methods

2.1. Research area and datasets

The soil profiles were selected from a spectral library of soil samples
collected in the Heihe river basin in northwestern China (between
96°8′–104°11′ E and 37°42′–43°19′ N), which covers an area of
271,000 km2 (Fig. 1). The basin is divided into three geomorphological
units from south to north: the Qilian Mountains in the upper reaches,
the middle Hexi Corridor, and the Alxa high plain in the lower reaches
(Wang et al., 2006). The Qilian mountains range from 2000 m to
5500 m a.s.l., with diversified landscapes such as high mountain glacier
and snow zone, permafrost zone, the mountain vegetation zone with
typical steppe and desert steppe (Li et al., 2001). The dominant soil
Orders in the Qilian Mountains are Cambosols, Isohumosols, Aridosols
and Primosols according to CST. Most of the artificial oases in the basin
are located in the middle reach due to a well-developed irrigation
system. The major soil Orders here are Anthrosols and Cambosols. The
lower reach is extremely arid with annual precipitation of< 50 mm,
while the potential evaporation exceeds 3000 mm. The predominant
soil Orders in this region are Halosols, Ariodosols and Primosols. In
addition there are small areas of Histosols and Gleysols. The eight soil

Fig. 1. Distribution of soil profiles.
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