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A B S T R A C T

Multi-scale soil variations are increasingly employed to improve the accuracy for digital soil mapping (DSM). In
this study, we attempted to explore a methodology of wavelet analysis on this topic. The terrain attributes of a
study area were decomposed using the wavelet analysis, and the resulted components were applied to map soil
organic carbon (SOC) content, pH and clay content using multiple linear regression (MLR) and regression kriging
(RK). The results showed that the wavelet components strengthened soil-landscape relationships in terms of
correlation coefficients, enhanced soil-landscape modelling in terms of MLR modelling coefficients of
determination (R2). Compared with several standard DSM approaches, i.e., ordinary kriging (OK), MLR and
RK with the original terrain attributes, the use of wavelet components improved the prediction accuracy at some
scales, but not all the scales. Most of the improvements were at the slight to moderate levels, e.g., 3.66–14.24%
increases in the accuracy based on mean error, mean absolute error, root mean square error and R2. Maps made
with wavelet components were relatively smooth and sometimes contained hotspots due to characteristics of
wavelet components, which differed a lot from those made by the standard DSM methods. The potential benefits
of using wavelet components as predictors in DSM may be further revealed in the future when more predictor
selection approaches and mapping methods are considered.

1. Introduction

The main objective of digital soil mapping (DSM) is to provide
accurate soil information to meet demands from precise management of
natural resources and environment, such as precision agriculture
(McBratney et al., 2003; Carré et al., 2007). Though this objective
has been achieved to some extent after decades of great efforts devoted
to this field, particularly compared with conventional soil mapping, a
large gap still exists between the obtained and demanded accuracies,
e.g., Yang et al. (2011), Hamiache et al. (2012), Sun et al. (2012c).

To improve mapping accuracy, more and more studies focused on
scale- and location-dependent soil variations, e.g., Behrens et al.
(2010a,b, 2014), Zhang et al. (2011), Sun et al. (2012a,b), Wang
et al. (2013), Miller et al. (2015), Song et al. (2016). This is related to
the limitation that standard DSM techniques, such as regression kriging
(RK), random forest, ordinary kriging (OK) and multiple linear regres-
sion (MLR), are not capable of handling non-stationary soil variation
due to the complex non-linear, non-addictive and non-overlapping soil

formation processes (Biswas and Si, 2011) and spatially varying
relationship between soil and environmental covariates (Song et al.,
2016). In general, three approaches were used to deal with the
problems: local regression kriging (LRK) (Sun et al., 2012a,b), geogra-
phical weighted regression (GWR) (Mishra et al., 2010; Kumar et al.,
2012; Wang et al., 2013; Song et al., 2016) and multi-scale terrain
analysis (Behrens et al., 2010a,b, 2014; Miller et al., 2015; Roecker and
Thompson, 2010).

The main difference of LRK and GWR from their traditional
counterparts, i.e., RK and MLR, respectively, is that they build a model
for a predefined local area, rather than doing it globally. As a result,
these two approaches do not really deal with multi-scale soil variations
(Song et al., 2016). In addition, Sun et al. (2012a,b) showed that the
performance of LRK was dependent on the inherent local relationships
between soil and environmental covariates and was not always the
optimal. Although many studies found GWR predicted soil relatively
more accurately than MLR, OK and RK, Song et al. (2016) concluded
that GWR only outperformed MLR but predicted worse results than RK.
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Multi-scale terrain analysis for soil mapping seems to perform better
in handling multi-scale soil variation, as such kind of methods compute
terrain attributes within a range of window sizes, resolutions or
neighborhoods. According to Behrens et al. (2014), outputs of multi-
scale terrain analysis reflected landscape characteristics as driving
forces for soil formation at different scales. Behrens et al. (2010a,b,
2014) found that, compared with mapping using standard terrain
attributes, mapping using outputs of multi-scale terrain analysis
increased prediction accuracies, for example, with a decrease of root
mean square error (RMSE) from 16.1% to 11.2% for topsoil silt content
and an average 20% increase of F1-measure (the harmonic mean of
precision and recall based on the confusion matrix) for soil classes.
Miller et al. (2015) also demonstrated a better performance of multi-
scale predictors in soil mapping, i.e., from negligible to 70% increases
of the adjusted correlation coefficients (R2) in soil-landscape modelling.

As a classical approach for multi-scale analysis, wavelet analysis
was introduced to investigate scale- and location-dependent soil varia-
tion by McBratney (1998) and Lark and Webster (1999). Afterwards, it
was applied in a number of studies, e.g., Lark et al. (2003), Si (2003),
Lark (2006), Biswas and Si (2011), Biswas et al. (2013). Most of the
studies reasonably interpreted multi-scale soil variation to physical soil
formation processes. These studies presented the advantages of using
wavelet analysis in separating soil variations into different scales by
dilating a wavelet using a scale parameter. For example, Lark and
Webster (2004) reveals enhanced correlations between soil thickness
and slope gradient at different scales and in different directions. Biswas
et al. (2013) also found similar results. Thus, Lark and Webster (2004)
proposed that wavelet analysis could be used to analyze available dense
data such as digital elevation data (DEM) to indicate soil. Later on,
Mendonca-Santos et al. (2007) applied wavelet decomposition of
environmental covariates into soil mapping and found slightly en-
hanced prediction accuracies (i.e., a 1% decrease of RMSE for clay
content and 2% of misclassification of soil class). Therefore, Mendonca-
Santos et al. (2007) recommended decomposition of environmental
covariates using wavelet analysis in soil mapping. Recently, Behrens
et al. (2010a,b, 2014) also promoted multi-scale analysis on environ-
mental covariates using wavelet. Until now, few studies have discussed
about this topic.

To further investigate this topic, this study applied the wavelet
decomposed terrain attributes in soil mapping and compared its
performances with standard DSM approaches, i.e., OK, MLR and RK.
Firstly, the commonly used terrain attributes derived from a DEM were
decomposed using wavelet analysis. Secondly, the decomposed compo-
nents were applied in DSM to predict soil properties using MLR and RK.
Thirdly, the resulted prediction accuracies were compared with those
obtained from OK, MLR and RK with the original terrain attributes.

2. Materials and methods

2.1. Study area

The study area is located in Nanning, Southwest China, within
latitude 22°57′8″–22°58′41″N and longitude 108°20′57″–108°21′54″E
(Fig. 1). The total area is 3.03 km2. The climate is subtropical humid
monsoon, with an annual average temperature of 21.6 °C and an annual
average rainfall of 1300.6 mm. The landforms are hilly, with elevations
between 130 and 300 m, and an average slope of 24.8°. Parent
materials of the soil are mud stone, mud shale and sand shale. This
area has been used for forestry in history and has been under Eucalyptus
plantation since a decade ago. The soils are latosolic red soil, referred to
Ustisol in the U.S. Soil Taxonomy.

2.2. Soil covariates

A DEM of 10 m cell size for the study area was built based on
digitized contour lines, shown in Fig. 1. The DEM was then pre-

processed with sinks and pits filled. A number of terrain attributes
were then derived from the DEM: elevation, slope, aspect, northernness,
easternness, northness, eastness, solar radiation, profile curvature, plan
curvature, specific catchment area (SCA), stream power index (SPI),
SAGA topographic wetness index (TWI) and topographic position index
(TPI). Except solar radiation which was calculated within ArcGIS 10.0
(ESRI, 2012), all the others were computed within SAGA (Conrad et al.,
2015). Although the two pairs, i.e., northernness and northness, east-
ernness and eastness, have the same meanings, they were computed in
different ways so all of them were used in this study. Northernness were
transformed from aspect using abs (180°-aspect) (Samuel-Rosa et al.,
2015), and easternness using abs (270°-aspect) for an aspect larger than
90° and 90° + aspect for an aspect smaller than 90°. Northness and
eastness were computed using standard cosine and sine transformations
from aspect, respectively (Miller et al., 2015). Following Song et al.
(2016), SCA was calculated with D8 algorithm and used to compute
TWI and SPI with local slope gradient. One year average potential
insolation was calculated as solar radiation following Song et al.
(2016). Since this area is quite small (i.e., 3.03 km2) and under the
same land use (i.e., Eucalyptus plantation), no other environmental
covariates like satellite images related to climate, geology and soil type
were used. Considering the edge problem in the wavelet analysis (Lark
and Webster, 2004), the terrain attributes data on a larger area
centering around the study area were input into wavelet analysis. The
attributes on sampling sites (depicted in the following) were summar-
ized in Table 1.

2.3. Soil sampling

Samples of this study were taken in three ways. First, conditioned
Latin Hypercube Sampling (cLHS) (Minasny and McBratney, 2006;
Roudier et al., 2012) was implemented to select 50 samples based on six
of the above terrain attributes: elevation, slope, aspect, plan curvature,
profile curvature and TWI. This technique was used because it provides
a full coverage of the range of each terrain attribute by maximally
stratifying the marginal distribution. Only these six terrain attributes
were used because they were enough to characterize the main soil
formation condition (Sun et al., 2012d). This sampling would be useful
for soil mapping with regression. Due to the difficulty of access to some
of them, a total of 45 of them were sampled in the field, i.e., red points
in Fig. 1. In order to have a full spatial coverage, grid sampling with an
interval of 250 m was implemented to select another 50 samples. This
would be useful for soil mapping with a spatial random effect (e.g., OK
and RK). For the same reason of difficult access, only 45 of them (blue
points in Fig. 1) were visited in the field, and some of them were shifted
away from originally selected positions. Finally, another 45 random
samples were taken. The samples collected using cLHS and grid were
used for prediction, while the random samples were used for validation.

At each sampling location, five cores of topsoil 0–20 cm were
collected from the four corners and center of a 1 m× 1 m square and
were then thoroughly mixed to form one composite sample. Soil
organic carbon (SOC) contents were determined by the potassium
dichromate oxidation method. Soil pH was determined using a pH
meter (1: 2.5 soil to water ratio). Soil clay content was measured using
the hydrometer method. Summary statistics of the three soil properties
are listed in Table 1. Octile skews (Brys et al., 2003) in the table showed
that it was unnecessary to transform the soil data towards normality
(Sun et al., 2012c).

2.4. Two-dimensional (2D) discrete wavelet analysis (DWT)

The 2D DWT was conducted in this study to decompose environ-
mental covariates, i.e., terrain attributes mentioned earlier. This
technique has been described in detail in many papers such as Lark
and Webster (1999, 2004). The wavedec2 function of Matlab 7.8.0 was
used in this study to implement the technique. At each scale, i.e., 2i×λ
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