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A B S T R A C T

As soil oxidizable carbon (Cox) has several different absorptions in the visible– and near infrared (vis–NIR) region
due to its complex composition, multivariate calibration techniques such as multiple linear regression (MLR),
partial least squares regression (PLSR), support vector machines (SVM) or random forest (RF) can be
advantageously used to obtain a good prediction. Besides that, the content of Cox is often affected by the
character of the terrain, mainly due to prevailing water regime with associated transport and sedimentation
processes. Therefore, the question arises; if predictive models calibrated by combining vis–NIR diffuse
reflectance spectroscopy (vis–NIR DRS, 350–2500 nm) and the digital elevation model (DEM) derivatives will
provide a more accurate estimate of Cox. Focused on a sloping arable land (100 ha) affected by distinct water
erosion, we tested for this purpose two conceptually different predictive approaches that differ in the nature of
the spectroscopic predictor variables. In Approach A that relied on absorption feature (AF) parameters, the
inclusion of DEM derivatives resulted in improved Cox prediction using all the tested calibration techniques, i.e.
MLR, RF, PLSR and SVM. The MLR prediction that was the most accurate among all others improved from
R2

cv = 0.81 (vis–NIR DRS dataset) or 0.50 (DEM derivatives dataset) to 0.84 (combination of both). For that
prediction especially AF centered at 500, 700, 900, 1800, 1900, 2200 and 2400 nm, as well as elevation, LS
factor and plan curvature were important. In contrast, in the Approach B that relied on reflectance (RF and
PLSR) or normalized reflectance (SVM) values at each wavelength, no positive effect of inclusion of DEM
derivatives was observed.

1. Introduction

Over the last three decades, remote (satellite or airborne) and
proximal sensing technologies have become extremely popular in soil
assessment applications, as they provide rapid and cost-effective
measurements of the Earth's surface. Among such methods, diffuse
reflectance spectroscopy in the visible– and near infrared region
(vis–NIR DRS, 350–2500 nm), in particular, has proved as a powerful
and promising analysis tool for highly accurate estimation of many
different chemical (e.g. soil pH, organic matter content, content of
nutrients, cation exchange capacity, etc.) and physical soil properties
(e.g. soil texture, soil moisture, bulk density, etc.), as well as other soil
characteristics (e.g. biological) and constituents (Stenberg et al., 2010).
From all the possibly predictable soil properties, especially soil organic
carbon (SOC) is important as a major indicator of soil quality (e.g.
Zádorová et al., 2015). The prediction accuracy of SOC models is
usually ranked highly as it is often rated as reliable or even excellent
(e.g. Chang et al., 2001; Shepherd and Walsh, 2002; Brown et al., 2006;

Gholizadeh et al., 2013; Vašát et al., 2015a; Vašát et al., 2015b).
As SOC responses multiply along the spectrum scan (it has several

different absorptions in vis–NIR range due to its complex composition),
mainly multivariate statistically based approaches such as partial least
squares regression (PLSR), support vector machines (SVM), random
forest (RF), multivariate adaptive regression splines or artificial neural
networks, usually provide accurate prediction (Viscarra Rossel and
Behrens, 2010; Gholizadeh et al., 2013). However, relatively simpler
physically based approaches, i.e. simple or multiple linear regression
(MLR), that are focusing on the relationship with absorption features
(AF) (as derived from spectra normalized via continuum removal (CR)
(Clark and Roush, 1984)) may occasionally provide comparative results
(Bayer et al., 2012). Moreover, if the best subset of AF parameters (e.g.
area, width and depth) for the MLR calibration is selected based on
statistical indices, such approach may outperform the statistically based
PLSR (Vašát et al., 2014). On top of that, the addition of two more AF
parameters (left and right hand side area) (Vašát et al., 2015b) to those
three already taken into considerations (area, width and depth) may
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lead to further improved efficiency of that methodology.
In a few cases, other environmental ancillary predictor variables

were incorporated into the multivariate regression to improve the
predictive performance of spectroscopic models. Brown et al. (2006)
suggested the use of sand content and soil pH, which, in their opinion,
are simple and inexpensive to obtain. By combining these two variables
with vis–NIR spectra they achieved an improved boosted regression
trees (BRT) and PLSR prediction. Stevens et al. (2013) tested two
particle fractions, sand and clay content (considered by the authors as
readily available and unlikely to change significantly over time),
incorporated into the multivariate calibration in two ways. Firstly
attached to the first few principal component scores (that were
explaining> 99% of the variation of the spectra) and used with PLSR,
BRT, RF, radial-basis SVM regression, multivariate adaptive regression
splines and Cubist regression, and secondly attached to the small set of
optimal spectral bands as selected with recursive feature elimination.
By using sand content their predictive models for both grassland and
woodland areas were noticeably improved, however, by using clay
content, only grassland models were improved. Most recently, Peng
et al. (2015) combined laboratory and remotely sensed spectra, as well
as other ancillary environmental variables (including terrain character-
istics such as elevation and landscape type maps, and soil maps), and by
employing Cubist regression they improved the accuracy of SOC
prediction, while emphasizing particularly the role of plant available
water (derived from soil texture maps).

Apparently, the few attempts to improve the spectroscopic models
performance were mainly based on incorporating other soil variables,
i.e. soil texture fractions. The information about soil texture, however,
may not be always available as it requires time- and labor consuming
laboratory analyses. On the other hand, remote sensing (RS) data
(satellite and/or airborne) are becoming more and more accessible. One
of the widely available RS data is the digital elevation model (DEM),
which comprises information about the terrains' surface. Using terrain
attributes to enhance the predictive models based on vis–NIR DRS could
be promising as many researchers found a mild to moderate relation-
ship of SOC to elevation (Adhikari et al., 2014; Florinsky et al., 2002),
slope (Adhikari et al., 2014; Florinsky et al., 2002; Moore et al., 1993;
Xiong et al., 2014), topographic (or SAGA) wetness index (Adhikari
et al., 2014; Florinsky et al., 2002; Moore et al., 1993), aspect, vertical
curvature, horizontal curvature and catchment area (Florinsky et al.,
2002).

In this study, we therefore attempted to further explore the potential
of terrain attributes as an auxiliary source of information in vis–NIR
DRS modeling, in order to improve the prediction accuracy of SOC. For
this purpose we tested two predictive approaches that differ in the
nature of spectroscopic predictor variables, which were five AF para-
meters (according to Vašát et al., 2015b) for Approach A, and
reflectance (or normalized reflectance) values at each wavelength in
Approach B.

2. Materials and methods

2.1. Study area and soil sampling

The study area (100 ha) is located in the southeast of the Czech
Republic, and so it belongs to the most fertile areas of the country. For
centuries it has been intensively farmed by cultivating crops such as
wheat and sweet corn. Nowadays, due to significant slope and
inadequate field management practices, the land is strongly affected
by water erosion, with distinct erosion furrows occurring mainly in the
steepest parts of the area. Soils were developed on loess parent material
rich in carbonates. Originally, the area was covered uniformly with a
single soil unit classified as Haplic Chernozem. However, due to
intensive machinery cultivation and consequent strong water erosion,
depending on the terrain conditions, three other soil units were later
developed. These were classified as Regosols (degraded Chernozem),

colluvial Chernozem and Colluvial soil. Regosols occur at the most
sloping parts of the area and are characterized by the eroded humic
topsoil horizon (that was largely washed away, partly even down to the
parent material). Soils classified as Colluvial Chernozem occur at
depressions in the upper and middle parts, and are enriched slightly
in the eroded material coming from the upper parts. The lowermost
parts of the area are covered with Colluvial soils that are highly
enriched in the transported material (mainly the eroded topsoil humic
horizon, but partly also mixed with the loess). The original Haplic
Chernozem remained at the top flat parts and gently sloping parts,
however, it is partly eroded too (Zádorová et al., 2013). All the soil
units were classified according to World Reference Base for Soil
Resources (IUSS Working Group WRB, 2014). For more detailed
characterization of the area see e.g. Zádorová et al. (2011a) or Jakšík
et al. (2015). One hundred and seven topsoil samples (< 20 cm) were
collected following a regular sampling design with a varying spacing
(Fig. 1) in the spring 2014.

2.2. Soil oxidizable carbon laboratory determination

Due to the nature of the analytical method (wet oxidation) used to
determine the content of SOC, we refer to it more precisely as soil
oxidizable carbon (Cox) hereinafter. The point is that not all the organic
matter may be completely oxidized by the oxidant during the oxidation
phase of the procedure (Skjemstad and Baldock, 2008).

The samples were air-dried at room temperature, ground and mixed
thoroughly using mortar and pestle, and finally sieved to a particle
fraction ≤0.25 mm. The Cox measurement was then carried out in two
sub-steps according to the dichromate redox titration method
(Skjemstad and Baldock, 2008). First, the samples were oxidized with
K2Cr2O7, and then the solution was potentiometrically titrated with
ferrous ammonium sulphate.

The histogram (Fig. 2) of Cox content (%) indicated a statistical
distribution close to normal, and the summary statistics was as follows:
mean = 1.24, median = 1.1, standard deviation = 0.37, mini-
mum= 0.31 and maximum = 1.92. The spatial distribution of Cox

content (%), as expressed by the different circle sizes (Fig. 1), implies
that the content of Cox varied across the area as a result of the character
of the terrain. Generally, the content was higher at the top flat and
gently sloping parts and lower at steep parts of the area.

Fig. 1. Spatial pattern of 107 topsoil samples (< 20 cm) with the content of Cox

differentiated by circle sizes. Digital Elevation Model (DEM) in the background.
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