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ABSTRACT

Real-time monitoring of soil salinity based on field samples and laboratory analyses is a costly and time
demanding procedure, so that sound methods that could reduce the burden by making use of cheaper data
would be a step toward a more sustainable salinity hazards monitoring system on the long run. Typically,
this involves replacing presumably error-free laboratory salinity measurements with indirect measure-
ments that are however affected by various source of uncertainties, and these uncertainties need to be
accounted for in order to avoid compromising the quality of the final results. More specifically, in a spa-
tiotemporal prediction framework where salinity maps need to be drawn repeatedly at various time instants
and where salinity values need to be compared over time for agricultural areas that are prone to salinity
hazards, it is of major importance to process these uncertainties in a sound way, as failing to do so would
impair our ability to detect salinity changes at an early stage for taking preventive actions.
The aim of this paper is to propose a filtered kriging framework that allows the user to rely on cheap field
sampled electrical conductivity (EC) measurements, that cannot however be assumed as error-free. Field
EC measurements need to be calibrated from laboratory measurements and the corresponding calibration
errors cannot be neglected. Moreover, when sampling is repeated over time, positioning errors are quite
common and can adversely impact the results due to the inclusion of an extra variability source. It is shown
how these uncertainties can be quantified and successfully processed afterwards for improving both the
reliability of the spatial predictions and temporal comparisons of soil salinity. The idea is to rely on a same
general optimal linear predictor that can be easily adapted to get rid of these unwanted effects.
The procedure is illustrated by using a rich data set of EC measurements that cover a time span of seven years
in the western part of Urmia Lake, northwest Iran. From these data, it is shown how calibration errors can be
considered as spatially independent and zero-mean Gaussian distributed, while laboratory measurements
exhibit a clear spatial structure but are also affected by a not inconsiderable spatial nugget effect, which
is in turn impacting the errors for field EC measurements due to the positioning errors. By relying on a
linear optimal predictor that reduces here to filtered kriging with measurement errors, it is shown that
filtering out these two random effect components clearly improves the quality of the results when it comes
to map EC values and to detect changes that occurred over time. Comparing filtered values for the successive
sampling campaigns provided evidence that a major salinity shift did occur between autumn 2011 and
autumn 2014 while the other parts of the area were left unchanged by comparison. From this study, it can
be concluded that even if the only errors involved in this work were linked to calibration and positioning
errors, the methodology is general enough to process various sources of uncertainties in general. It is thus
a valuable tool for practitioners, with a field of potential applications that goes beyond the framework of
salinity monitoring.
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1. Introduction

Soil salinity monitoring is of great importance in arid and semi-
arid regions, where it is expected to increase at a fast pace due to
drought and secondary salinization processes. Due to the devastating
effect salinity can have on soil properties, it is recognized as a major
agricultural and environmental concern in these regions (Gorji et al.,
2015; Scudiero et al., 2015; Taghizadeh-Mehrjardi et al., 2015; Wu et
al., 2014). For regions that are also typically facing unfavourable eco-
nomic conditions and where budgets devoted to spatially extended
and temporally replicated sampling campaigns are accordingly quite
low, approaches based on extensive yearly monitoring are doomed
to fail, so alternate approaches have to be set up and promoted (Li et
al,, 2016; Scudiero et al., 2016) .

Over the last few years, due to the depletion of Urmia Lake
located in the northwest part of Iran (one of the biggest salty lakes
in the world), the proportion of surrounding saline agricultural
lands increased at a fast pace. Major reasons for this are changes
that occurred in saline versus non-saline groundwater interfaces,
along with saline dust coming from recently exposed salt surfaces
that were previously constituting the Lake bed. With a population
of about 6 million people that are directly and indirectly affected
by the consequences of Urmia Lake depletion, threats induced by
salinization (and possibly subsequent desertification) of agricultural
lands require specific attention and proper actions need to be taken.
These actions include addressing the issues and challenges that are
linked to an efficient but cost-effective monitoring of the salinization
process over the region.

Nowadays, satellite imagery is probably one of the most cost-
effective tool to get fast information about natural phenomena
occurring over extended land surfaces. Accordingly, there have been
several attempts to retrieve low-cost salinity information from satel-
lite images for soil salinity prediction goals (e.g. Khan et al., 2001;
Metternicht and Zinck, 2003; Wang and Xu, 2008; Bouaziz et al.,
2011; Sivanpillai et al., 2012; Lhissoui et al., 2014). However, there
are also clear limitations when using remotely sensed data over
saline soils. For very high or low salinity levels occurring over soils
that are covered with vegetation, reliable predictions of soil salin-
ity is mostly impossible (Douaoui et al., 2006). Therefore, there is
still a great need for precise and direct measurements of soil salinity,
especially over areas were abrupt variations are likely to occur.

Monitoring efficiently soil salinity from ground measurements
requires that numerous samples are taken in the field, both on a
regular basis and with a density over the monitored area that is suf-
ficient enough for allowing further spatial and temporal modelling,
with the final aim of temporal prediction and spatial mapping. As
the processing of these samples using laboratory measurements is
both time demanding and expensive, workaround solutions need to
be proposed. A classical approach is to rely on indirect measure-
ment of soil salinity based on soil electrical conductivity (EC) that can
be conducted in the field and compared to laboratory values. EC is
deemed to be representative of soil salinity conditions and has been
widely used for prediction and mapping in this context (e.g. Corwin
and Lesch, 2005a,b; Corwin et al., 2006; Douaik et al., 2005; Johnson
et al,, 2001; Li et al., 2007) Although field EC measurements lead to
relatively accurate predictions of soil salinity by comparison with
remotely sensed data, they still need to be calibrated with laboratory
measurements, and ideally the corresponding calibration errors need
to be accounted for too, as it is also the case for remotely sensed data.

The relationship between EC measurements and soil salinity has
been studied for a long time (see, e.g., Amezketa, 2006; Halvorson
et al,, 1977; Yao and Yang, 2010) In parallel to this, there have
been more recent attempts to account for EC measurements as well
in remote sensing applications (Khan et al., 2001; Metternicht and
Zinck, 2003 ; Wang and Xu, 2008; Bouaziz et al.,, 2011; Wu et
al., 2014; Scudiero et al., 2015; Huang et al., 2015). For example,

Douaoui et al. (2006) used a combination of remotely sensed and
ground based data for spatiotemporal monitoring of soil salinity in
Algeria in a regression kriging procedure. The resulting predictions
were more effective than those based either from pure spatial inter-
polation of ground data or from salinity indices as extracted from
satellite images. Li et al. (2012) studied spatiotemporal variations of
soil salinity in China based on EM38 and EM31 measurements by
calibrating them and using them afterwards in kriging algorithms.
Ding and Yu (2014) proposed and evaluated a prediction approach
based on remote sensing and near sensing technologies by using
universal kriging, spectral index regression and regression kriging
approaches. However, for all aforementioned studies, the authors did
not accounted for the errors involved by the use of calibrated data,
which cannot be considered as error-free compared to laboratory
measurements.

Accounting formally for the uncertainty attached with measure-
ments is by itself a topic of research in a spatiotemporal monitoring
and mapping context. Several authors have proposed methods aim-
ing at handling properly uncertain data for improving the quality
of the subsequent predictions (Bogaert and D’Or, 2002; Brus et al.,
2008; Christakos, 1990; D’Or et al., 2001; Douaik et al., 2004; Fazekas
and Kukush, 1999, 2005; Heuvelink and Bierkens, 1992; Serre and
Christakos, 1999) . To the best of our knowledge, for the specific case
of spatiotemporal prediction of soil salinity, there are no available
studies devoted to the explicit processing of uncertainties coming
from the use of calibration relationships. One notable exception is
the work by Douaik et al. (2005) about soil salinity predictions that
were based on a Bayesian Maximum Entropy method applied to
space-time data in Hungary, for which the results were convinc-
ing. Hamzehpour et al. (2013, 2015) also used field measured EC to
predict top soil salinity based on kriging with measurement errors
(KME), where field EC values are considered as “soft” information,
by comparison with the “hard” (i.e., error-free) information coming
from laboratory measurements. By properly accounting for the cali-
bration errors when relating field EC and laboratory measurements,
they emphasized the clear benefit of this approach.

These are topics of major importance, as using efficiently soft
information is expected to increase the quality of the soil salinity
spatiotemporal predictions, while at the same time reducing the
sampling costs associated with laboratory analyses and calibration
requirements, that would become prohibitive when it comes to mon-
itoring large areas over time on a yearly temporal basis. Keeping
these objectives in mind, the aim of this paper is to propose a sound
and efficient methodology that is able to process field EC measure-
ments that are subject to various sources of errors and to show how
a sound processing can greatly help for dampening their impact, thus
easing in turn the monitoring of soil salinity over time and improving
the quality of the resulting prediction maps.

2. Material and methods
2.1. Study area and sampling campaigns

The study was conducted over 5000 ha of lands located in the
western part of Urmia Lake, North West of Iran (see Fig. 1). Soil
samples were taken over a depth interval of 0-20 c¢m during nine
sampling campaigns over a time period that covered seven years.
During the first sampling campaign (Autumn 2009), 186 soil sam-
ples were taken on a grid of about 500 meter spacing. They were
used (results not shown here) to identify a more specific area where
a shift in the salinity conditions seemed to occur in space, as this is
indicative of a salinity front that need to be monitored over time.
Accordingly, during the second sampling campaign (Spring 2010),
besides these same 186 locations, 50 additional samples were also
taken in that specific area. From Autumn 2011 to Autumn 2016, non-
saline agricultural lands were omitted from the sampling due to cost
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