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Soil pH controls the availability of the majority of plant nutrients, if not all, and determines the growth environ-
ment for plant roots. Profile depth functions have beenused to represent the vertical distribution of soil attributes
and to predict them at continuous depths. This paper proposes a newmodel to predict pH for awhole soil profile.
Soil properties including pH are often similar within the plow layer frommixing during tillage and other agricul-
tural operations. Similarly, soil pH below the root zone tends to be uniformdue to lowdisturbance, leaving a tran-
sition zone from the bottom of the tillage layer to the bottom of the root zone due to depth-dependent root
density and related soil processes. Keeping this physical description of agricultural field soil profile in mind, a
closed form equation (model) was developed similar to a sigmoid curve. The model has 4 parameters including
1) soil pH at the top of a soil profile, 2) soil pH at the bottom of a soil profile, 3) hillslope parameter representing
steepness of the curve that is determined by the length of the root zone, and 4) inflection point representing al-
most the midpoint of the transition zone or root zone. A total of 32 soil cores down to about 1.1 m depths were
collected from an agricultural field of Macdonald farm, McGill University. The sub-samples were taken at every
10 cm and analyzed for soil pH in soil: water suspension in the laboratory. The measured pH was used to test
the fitting performance of the sigmoid model. Additionally, a global dataset with 432 profiles with various soil
classes, drainage types, land use, and altitude was also used to test the generality of the new model. The perfor-
mance of thismodelwas comparedwith the results of the commonly used 3rd order polynomial regression func-
tion and the equal-area quadratic spline function. Good performance of the sigmoidmodel with explicit physical
explanation showed promise in predicting soil pH at depths. The spline function had the highest accuracy but
lacked a general trend in its shape and parameters. The polynomial function had good accuracy and displayed
a non-monotonic trend, which can also be used as a substitute for some profiles with complex variability.
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1. Introduction

Soil pH is an important soil quality index and controls the plant nu-
trient availability, growth environment of plant roots, soil microbial ac-
tivities, and many chemical processes that take place in soil (Aciego
Pietri and Brookes, 2008; Kahlert et al., 2004). Agriculturalmanagement
decisions are often constrained to surface soil pHmeasurements due to
the convenience and ease of sample collection. However, as the plant
roots can reach subsoil and even deep soil, the measurement of soil
pH at depths is important for understanding the rhizosphere environ-
ment, and chemical and biological activities. Various soil forming factors

(Jenny, 1941), such as parentmaterial, organism, and climate, combined
with management activities, like fertilizer and manure application, and
tillage, contribute together to the variability of soil pH. Quantitative in-
formation on the spatial variability of soil pH, sometimes displayed as
digital soilmaps, plays an essential role in site-specific agriculturalman-
agement such as lime requirements, and soil quality assessment. Addi-
tionally, 3D digital soil mapping combining horizontal maps and
profile depth functions becomes increasingly popular and important
for understanding three-dimensional spatial variability and its relation-
ship to other soil properties (Liu et al., 2013).

Profile depth functions are based on the premise that soil properties
vary continuously with depths in a profile (Russell and Moore, 1968).
The variability has been modelled by various depth functions, ranging
from a freehand curve created by Jenny (1941), to more sophisticated
models, such as exponential decay functions (EDFs) (Minasny et al.,
2006), polynomial functions (Veronesi et al., 2012), power functions
(Liu et al., 2016), and equal-area quadratic spline functions (EAQSFs)
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Abbreviations: 3D, three dimension; EDF, exponential decay functions; EAQSF, equal-
area quadratic spline functions; SOC, soil organic carbon; SOM, soil organic matter; EC,
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(Bishop et al., 1999). The EAQSFs, fitted by a set of local quadratic poly-
nomials for each horizon, describe a smooth curve through horizon
mid-points (McBratney et al., 2000). Spline functions were reported to
have the highest accuracy due to higher flexibility and feasibility
(Webster, 1978). The EAQSF has been widely and successfully used to
model the vertical distribution of various soil properties, including soil
organic carbon, availablewater capacity, soil texture, bulk density, soil sa-
linity, and soil pH (Adhikari et al., 2014; Bishop et al., 2015; Lacoste et al.,
2014; Malone et al., 2009; Odgers et al., 2012; Taghizadeh-Mehrjardi et
al., 2014). However, without an explicit mathematical formula and a con-
sistent set of parameters, EAQSF is simply a numerical and graphical
fitting of horizon data, which changes its shape from profile to profile.
Such function individually fits the profile data well but lacks a general
trend and the physical explanation of soil-landscape relationship (Liu et
al., 2016). Therefore, more effective depth functions with definite mathe-
matical formulas, and clear and general tendency should be searched for
specific soil properties.

The EDFs have been used tomodel the vertical distribution of soil or-
ganic carbon content (SOC) basing the fact that higher SOC is present in
the topsoil and gradually decreases in the profile (Minasny et al., 2006).
Later the EDFs have been modified by involving the integral form
(Mishra et al., 2009), segmenting the functionswith a constant present-
ing plow layers (Kempen et al., 2011; Meersmans et al., 2009), and cre-
ating a normalized form (Wiese et al., 2016) to take into account
practical issues and represent site-specific profiles. However, themono-
tonic and steady decreasing trends of the EDFs limit their application for
other soil properties. In recent years, more and more mathematical
models are proposed to delineate the vertical distribution of various
soil properties, including a 6th order polynomial regression functions
to represent soil compaction (Veronesi et al., 2012), a linear function
with Tikhonov regularization (TR) to describe soil EC (Li et al., 2013),
and another power function to describe SOC (Liu et al., 2016).Moreover,
Minasny et al. (2016) reviewed several common types of parametric
and nonparametric depth functions, including uniform, gradational, ex-
ponential, wetting front, abrupt, peak, and MiniMax; some of which
only have graphical fitting and lack mathematical formulas. Even
though these depth functions fit well, the generality of these functions
still need further exploration, and the physical explanation of the pa-
rameters needs improvement to represent the effect of pedological pro-
cess and management activities.

Every soil property has its unique vertical distribution which could
be modelled by specific depth function (Jenny, 1941). However, soil
pH has not been widely recognized for its vertical variability and
modelled by explicit equations. Yet few papers used data or graphs to
qualitatively show the vertical trend of pH values. For example, Chi et
al. (2010) reported an increasing soil pH with depth in reclaimed rice
land and soybean land. The EAQSFs have also been used to model the
vertical distribution of soil pH for digital soil mapping (Adhikari et al.,
2012; Bishop et al., 1999; Odgers et al., 2015). However, the EAQSF fits
soil profile individually and lacks generality. Moreover, considering
the physical condition of agricultural fields, three types of variability
in soil pH may persist with depth: 1) a relatively uniform condition in
the plow layer due to the mixing effect of tillage and other agricultural
operations, 2) a relatively uniform condition in the bottom layer due
to non-disturbance and possible consistent groundwater effect, and 3)
a transition layer in between. Soil pH should be fitted with a more gen-
eral and appropriate function that can better describe the variability
with depth.

The goal of this study was to develop a sigmoid-based model
representing change of soil pH with depth and test its applicability.
More specifically, the objectives were: 1) to develop a sigmoid-based
model using soil profiles from a specific agricultural field (using a local
dataset); 2) to apply this model to a global soil pH dataset and to quan-
tify its performance; as well as 3) to compare the sigmoid-based model
with the polynomial regression and a splinemethod, as commonly used
alternatives.

2. Materials and methods

2.1. Study area

A field experiment was conducted in Field 26 (11 ha) of Macdonald
Farm, McGill University, Quebec, Canada (45.4°N and 73.9°W) (Fig. 1).
The landscape of the farm locates on two rolling plateaus formed by
thousands of years' carving of Ottawa River, resulting in various soil
types and providing a good test bed for model validation. Soil types of
Field 26 are highly variable and range from the deep organic deposit
(peat) over the shallow organic deposit to mineral soils with dominant
textures including sand, light sandy loam, ill-drained sandy loam, loam,
silt loam, and clay loam. Soils in Field 26 are classified into multiple soil
series including Muck, ST-Zotique, Soulanges, ST-Damase, Uplands,
Chicot, Farmington, Chateauguay, andMacdonald following the Canadi-
an Soil Classification System. The elevation of Field 26 ranges from 6.88
to 9.22 m above sea level and the long-term (30 years) average annual
air temperature is 6.2 °C and average annual precipitation is 979 mm.
Field 26was under corn-soybean rotation and the crop previous to sam-
ple collection was soybean.

2.2. Sample collection and analysis

A total of 32 georeferenced soil cores (Fig. 1) down to about 1.1 m
depth were collected using a truck-mounted hydraulic soil profiler
(Veris® P4000 soil profiler, Veris technologies Inc., Salina, KS, USA) fol-
lowing a modified nested grid sampling design to obtain a good spatial
coverage in November 2014. The soil cores were subsampled at every
10 cm layer. Two soil profiles were dug only to 30 cm restricted by
rocks occurring at a shallow depth. A total of 284 samples were sealed
in Ziploc bags and transported to the laboratory for analysis.

Air-dried and ground (particle size b 2 mm) samples were used for
soil pH determination in a soil-water solution of 1:2 soil to water ratio
(1:4 for organic soil). Since the samples were taken at 10-cm depth in-
tervals, the measured pH values represented the average values of
10 cm soil horizons and marked as the pH value at mid-point of each
soil horizon.

2.3. Sigmoid model

A sigmoid-based model was adopted in this research as follows:

f xð Þ ¼ sþ d−s

1þ x
α

� �−k
ð1Þ

where f(x) was the soil pH, and xwas the soil profile depth (cm), s and d
represented the soil pH at the top and bottomof soil profiles, respective-
ly, α was the depth of inflection point (i.e., the middle of the transition
zone), and k was the steepness of the curve related to the thickness of
the expected transition soil layer. A possible approach to estimating s
and d is to impose the two parameters in the sigmoid function by mea-
sured values of soil pH at the top and bottom of soil profiles.

2.4. Depth functions

The sigmoid model was compared with the commonly used 3rd
order polynomial regression function and the EAQSF.

For 3rd order polynomial regression function used in this studywas:

f xð Þ ¼ aþ b� xþ c� x2 þ d� x3 ð2Þ

where a, b, c, and d were four parameters of the polynomial function.
The 3rd order polynomial function was chosen in this study because
similarly to the sigmoid, it has a single deflection point. The sigmoid
and 3rd order polynomial functions were fitted by minimizing RMSE
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