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a b s t r a c t

Given the need to consider the cryosphere in water resources management for mountainous regions, the
purpose of this paper is to model the daily spatially distributed dynamics of snow covered area (SCA) by
using calibrated cellular automata models. For the operational use of the calibrated model, the only data
requirements are the altitude of each cell of the spatial discretization of the area of interest and precip-
itation and temperature indexes for the area of interest. For the calibration step, experimental snow cov-
ered area data are needed. Potential uses of the model are to estimate the snow covered area when
satellite data are absent, or when they provide a temporal resolution different from the operational res-
olution, or when the satellite images are useless because they are covered by clouds or because there has
been a sensor failure. Another interesting application is the simulation of SCA dynamics for the snow cov-
ered area under future climatic scenarios. The model is applied to the Sierra Nevada mountain range, in
southern Spain, which is home to significant biodiversity, contains important water resources in its
snowpack, and contains the most meridional ski resort in Europe.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Water resources management and operational river forecasts in
river basins that enclose high mountainous regions must take into
account the cryosphere (i.e. the snowpack). The amount of snow
and its spatial and temporal distribution as well as the outflow
of water from the snowpack must be estimated from available
information. The problem is three-fold: (i) estimation of the snow
covered area (SCA); (ii) estimation of the snowpack thickness and
(iii) estimation of the snow density. The three variables (covered
area, thickness and density) are needed to estimate the snow water
equivalent, however estimating each variable is a problem in and
of itself. Each variable can be approached by applying different
modelling techniques: interpolation methods (e.g. Richer et al.,
2013; Mir et al., 2015 to estimate SCA; Collados-Lara et al., 2017
to estimate snow pack thickness; Bormann et al., 2013 and
Lopez-Moreno et al., 2013 to estimate snow density; Sexstone
and Fassnacht, 2014 and Elder et al., 1998 to estimate snow water
equivalent), conceptual methods (e.g. HBV (Lindström et al., 1997);

Snowmelt Runoff Model (SRM) (Martinec et al., 2008; Sensoy and
Uysal, 2012) or physically-based models (e.g. CROCUS (Bruland
et al., 2001); ECHAM (Foster et al., 1996)). Under standard circum-
stances, SCA can be estimated using satellite data, such as from the
Moderate Resolution Imaging Spectroradiometer (MODIS) (Hall
et al., 2006; Hall and Riggs, 2007). The question we aim to answer
in this work is how to estimate the snow covered area when satel-
lite data are unavailable. Satellite data may be unavailable for dif-
ferent reasons. For instance it could be because the satellite was
not launched yet or because the temporal resolution of the satellite
data is larger than the temporal resolution of interest. Also satellite
data may be useless because the area of interest was covered by
clouds or because there was a failure in the sensor. Furthermore,
future scenarios of precipitation and temperature could be defined
from the simulation performed with different Regional Climatic
Models (RCM) for the emission scenarios defined by IPCC (Jacob
et al., 2013). These future scenarios of climate in an area, defined
by applying a downscaling technique from the RCM simulations,
could be used to feed the SCA model in order to assess future
SCA scenarios. This is a method commonly applied to assess future
scenarios of other hydrological variables from hydrological balance
models (Pulido-Velazquez et al., 2011; Pulido-Velázquez et al.,
2015). These hydrological model predictions could also be
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improved by incorporating SCA using the data assimilation tech-
nique (Thirel et al., 2013; Alvarado Montero et al., 2016).

In addition to the physically-based or conceptual approaches
(Molotch et al., 2004), we can also find examples of regression
techniques (Richer et al., 2013; Mir et al., 2015) and learning algo-
rithms (artificial neural networks) to estimate Snow Cover Fraction
Mapping (Hou and Huang, 2014; Mishra et al., 2014). In this study
we propose a novel approach to the problem: the application of an
evolutionary algorithm, as the cellular automaton, to estimate SCA.
The estimation of SCA fits perfectly in the kind of problems that
can be analysed with cellular automata techniques, as they are
complex, dynamic systems that can be approached in a discrete
way. Cellular automata models are good for simulating complex
discrete dynamics by using simple rules that define the interaction
between neighbour cells that discretize the study area. They have
been applied to different problems in geosciences like urban
growth dynamics (Kumar et al., 2014), snow crystal growth
(Reiter, 2005) or simulation of snow avalanches (Barpi et al.,
2007), among others. Cellular automata have also been used to
simulate snow cover dynamics (Leguizamón, 2006). However the
latter reference offers only a preliminary study that had significant
limitations: (i) it only uses a small synthetic area rather than a real
study area, (ii) it simulates a simple dynamic situation of reduction
of the snowpack from a starting condition with an existing snow-
pack, (iii) the simulation is for a short time interval, (iv) the simu-
lation does not introduce driving climatological indexes
(precipitation and temperature) in order to guide the dynamics,
(v) the procedure cannot start a snowpack in an image where all
the cells are without snow. In this paper we extend the idea of
using cellular automata to estimate the snow covered area. The
extension deals with overcoming each of the aforementioned lim-
itations. We used a real case study so that the cellular automata
could be calibrated and validated but the methodology is com-
pletely general and can be applied to any area of interest because
the data requirements are minimal. The methodology is described
in the next section.

2. Methodology

Cellular automata are discrete dynamic models introduced by
Wolfram (1984) in order to simulate complex dynamics using sim-
ple rules of interaction. The two-dimensional area of interest (i.e. a
geographical region projected on a plane) is divided into a finite
number of cells or pixels. Time is also discretized in time steps.
The shape and size of the study area can be arbitrary, but for the
sake of presentation one can think of a rectangular grid of cells:
fði; jÞ; i ¼ 1; . . . ;Nx; j ¼ 1; . . . ;Nyg. The size of the cell can be any of
interest; for example in the case study we will use square cells
measuring approximately 460 m � 460 m, which is the spatial res-
olution of a MODIS image for the latitude of the study area. As was
already mentioned, there is also a discretization of time; for exam-
ple in the case study the time step is one day. Next, each cell ði; jÞ
can be, at each time, t, in one of two possible states (1 or 0):

Sði; j; tÞ ¼
1 if cellði; jÞis covered by snow at time t
0 ifcellði; jÞis free of snow at time t
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ð1Þ

The state Sði; j; tÞ depends, in general, on:

� The state of the cell ði; jÞ at the previous time step: Sði; j; t � 1Þ.
� The states, at the previous time step, of the cells of a given con-
figuration of neighbour cells. For example for an 8-
neighbourhood, the states of the cells ði� 1; j� 1Þ, ði; j� 1Þ,
ðiþ 1; j� 1Þ, ðiþ 1; jÞ, ðiþ 1; jþ 1Þ, ði; jþ 1Þ, ði� 1; jþ 1Þ and
ði� 1; jÞ at time t � 1 are involved.

� A given set of transition rules. In classic cellular automaton
models, the transition rules depend on the state of the cell at
the previous step and the states of the neighbour cells at the
previous step. However, in order to simulate realistic snow
dynamics, we must introduce transition rules defined by some
driving variables. This can be defined as a mixed cellular
automaton. We have chosen a couple climatological indexes
as driving variables: precipitation and temperature, PðtÞ and
TðtÞ, respectively, and a terrain variable: the altitude Hði; jÞ of
each cell ði; jÞ. This allows the cellular automaton to evolve even
if all the cells of the study area are at state zero. The altitude
index in the calculation cells has been obtained as the mean
altitude from a digital elevation model which has a spatial res-
olution of 5 meters (the highest DEM resolution available from
the National Geographic Institute of Spain). Temperature and
precipitation indices are used in the form of two time series:
a time series of daily temperature and a time series of daily pre-
cipitation. These time series could be measured at a weather
station or obtained from a given estimation product. The abso-
lute values of these indices are not important in this problem
because they are calibrated for a specific problem. The truly
important feature of these indices is that they capture the tem-
poral climatological variability of the case study.

The cellular automata model is calibrated with experimental
snow covered area data for a particular period of time. For exam-
ple, in our case study the experimental data are daily binary
images of snow/no snow cells obtained from MODIS images (Hall
et al., 2006) and the calibration period lasts three years. Further-
more, in our case study (next section), the estimation time starts
on 1 July of the first year of the calibration period when the state
of every cell in the study area is equal to zero (there is no snow
in the study area). Hence, a pure cellular automaton cannot work
because all the cells have the same state of zero, or equivalently
the snowline is at an arbitrarily high altitude, which is larger than
the largest altitude in the study area. Thus by introducing the driv-
ing variables, the discrete system can follow the realistic dynamics
of the snowpack by changing the snowline, which is defined as the
altitude above which the terrain can have snow. Thus new transi-
tion rules are introduced by using the climatological indexes and
the digital elevation model is:

� If the precipitation is larger than or equal to a given threshold,
PðtÞ P P0, and the altitude of the cell ði; jÞ is above the snowline
Hði; jÞ > HkðtÞ, the state of the cell will be 1 (that is, by remain-
ing at state 1 if it was already 1 or by changing from state 0 to
state 1). The snow line Hk is defined, discretized in K values, by
the temperature index TðtÞ:
If TðtÞ < T1 then HkðtÞ ¼ H1

If TðtÞ < T2 then HkðtÞ ¼ H2

. . .

If TðtÞ < TK then HkðtÞ ¼ HK

With T1 > T2 > . . . > TK and H1 > H2 > . . . > HK .

� If precipitation at day t is below the threshold PðtÞ < P0 and the
temperature has decreased or has increased by an amount
smaller than a given threshold:

TðtÞ � Tðt � 1Þ 6 Tc > 0 ð2Þ
then the state of each cell remains at the state of the previous time
step.

� Otherwise, if precipitation at day t is below the threshold
PðtÞ < P0 and the temperature has increased by an amount lar-
ger than a given threshold
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