
Research papers

Assimilation of soil moisture and streamflow observations to improve
flood forecasting with considering runoff routing lags

Shanshan Meng a, Xianhong Xie a,⇑, Shunlin Liang a,b

a State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing
100875, China
bDepartment of Geographical Sciences, University of Maryland, College Park, USA

a r t i c l e i n f o

Article history:
Received 27 December 2016
Received in revised form 4 May 2017
Accepted 12 May 2017
Available online 17 May 2017
This manuscript was handled by K.
Georgakakos , Editor-in-Chief, with the
assistance of Hamid Moradkhani, Associate
Editor

Keywords:
Flood forecasting
Data assimilation
Runoff routing lag
Soil moisture
Streamflow

a b s t r a c t

Assimilation of either soil moisture or streamflow has been well demonstrated to improve flood forecast-
ing. However, it is difficult to assimilate two different types of observations into a rainfall–runoff model
simultaneously because there is a time lag between soil moisture and streamflow owing to the runoff
routing process. In this study, we developed an effective data assimilation scheme based on the ensemble
Kalman filter and smoother (named as EnKF-S) to exploit the benefits of the two observation types while
accounting for the runoff routing lag. To prove the importance of accounting for the time lag, a scheme
named Dual-EnKF was used to compare. To demonstrate the schemes, we designed synthetic cases
regarding two typical flood patterns, i.e., flash flood and gradual flood. The results show that EnKF-S
can effectively improve flood forecasting compared with Dual-EnKF, particularly when the runoff routing
has distinct time lags. For the synthetic cases, EnKF-S reduced root–mean–square error (RMSE) by more
than 70% relative to the data assimilation scheme without considering runoff routing lags. Therefore, this
effective data assimilation scheme holds great potential for short-term flood forecasting by merging
observations from ground measurement and remote sensing retrievals.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

In early July 2016, widespread flooding in central and southern
China killed more than 200 people and destroyed more than
100,000 houses. Nearly 2,000,000 people were forced to leave their
hometowns. Although flood forecasting has been a long-term con-
cern in the hydrology community (Adams and Pagano, 2016), this
event reignited public concern on the importance of flood forecast-
ing. Producing a reliable forecasting method with a sufficient lead
time is valuable for reducing the losses from floods, particularly
flash floods (Li et al., 2013a; Shih et al., 2014). However, the relia-
bility of flood forecasting is generally hampered by various uncer-
tainties in flood forecasting from the initial conditions, model input
forcing, parameters, and model structures (Xie et al., 2014; Xie and
Zhang, 2010, 2013).

To reduce these uncertainties, many technologies (eg., multi-
objective evolutionary algorithms, data assimilation methods like
variational techniques, Kalman filter and its variants) have been
developed (Evensen, 2009; Reed et al., 2013); of these, data assim-
ilation shows promise and has been increasingly used in hydrology

in the past decade. In particular, assimilating multiple observation
types into rainfall–runoff models was effective and encouraged for
flood forecasting (López López et al., 2016; Li et al., 2013a; Liang
et al., 2013; Wanders et al., 2014; Xie et al., 2014). The most pop-
ular observations types arguably include soil moisture, streamflow
and snow data.

Exact estimation of soil moisture conditions will significantly
improve streamflow prediction, particularly in short-term flood
forecasting (Berthet et al., 2009; Brocca et al., 2012; Crow et al.,
2005; Weissling et al., 2007), because it dominates the process of
rainfall transform into infiltration and runoff (Chen et al., 2014;
Massari et al., 2014). Assimilating soil moisture from ground mea-
surement or remote-sensing retrievals can compensate for the
deficiency of the antecedent conditions. Therefore, soil moisture
is a favorable observation variable in data assimilation. Several
successful cases of soil moisture assimilation to update model
states, parameters, and output variables have been reported
(Alvarez-Garreton et al., 2014, 2015; Chen et al., 2011; Crow and
Ryu, 2009; Wanders et al., 2014). For example, Brocca et al., 2009
carried out assimilation of near-surface soil moisture to improve
storm rainfall-runoff modeling in a small experimental plot.
Moreover, remote sensing soil moisture retrievals can be used
not only to adjust pre-storm soil moisture conditions but also for
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storm-scale rainfall accumulations (Alvarez-Garreton et al., 2016;
Chen et al., 2014; Crow and Ryu, 2009; Massari et al., 2014).

In addition to soil moisture, streamflow and snow water equiv-
alent are preferable in data assimilation (Sun et al., 2015; Wanders
et al., 2014; Bergeron et al., 2016). Streamflow is a response to rain-
fall and temperature that has strong correlations with model state
variables defined in related rainfall–runoff models, and streamflow
measurement is more convenient than soil moisture retrieval from
remote sensing for basin-scale applications. Thus, assimilating
streamflow observations in hydrological modeling has received
special recognition in the past decade (Li et al., 2013a). For exam-
ple, Abaza et al., (2014) assimilated streamflow observations
sequentially within an ensemble prediction system to enhance
short-term hydrological forecasting. Chen et al., 2013 applied the
Ensemble Square-Root-Filter method for real-time flash flood fore-
casting. Moreover, snow water equivalent observations were also
widely used in snow-dominated regions. Bergeron et al. (2016)
found that combined assimilation of streamflow and snow water
equivalent is favorable during the snowmelt period. We focus on
assimilation of soil moisture and streamflow observations in this
study.

Because assimilating either soil moisture or streamflow can
achieve acceptable estimations, we hypothesize that the simulta-
neous assimilation of the two observation types can substantially
improve flood forecasting which has been proved by several stud-
ies (Aubert et al., 2003; Barrett and Renzullo, 2009; López López
et al., 2016; Lee et al., 2011; Sun et al., 2016; Wanders et al.,
2014; Yan and Moradkhani, 2016). For instance, López López
et al. (2016) compared an individual assimilation of soil moisture
or streamflow observations with a joint assimilation of both obser-
vations. The result indicated that the joint assimilation leads to a
further improvement for streamflow simulation. Although this
concept is encouraging, it is difficult to exploit the advantages of
simultaneous assimilation of multiple observation types. One rea-
son is that each type characterizes a specific hydrological process,
and the observation correlates with other variables across different
spatial and temporal scales. Specifically, soil moisture responds to
a rainfall event immediately, whereas streamflow has a late
response.

The assimilation of multiple observation types has an improve-
ment on the simulation of discharge as shown by other studies.
However, most of these studies ignored the uncertainties from
the routing process which is especially influential in short-term
flood forecasting. Runoff travels over hillslope and river network
and then becomes streamflow (generally referred as routing), So
in the short-term flood event, streamflow at a basin outlet is the
cumulative result of generated runoff for a period of hours to sev-
eral days, which is known as time delay in the routing process.
Consequently, the uncertainties from state variables will accumu-
lated in the streamflow; thus, assimilation of streamflow observa-
tions to update current state variables directly may still have room
for improvement (McMillan et al., 2012; Pauwels and De Lannoy,
2009).

To mitigate this issue, previous studies have suggested several
useful solutions (Pauwels and De Lannoy, 2009). McMillan et al.,
2013 found that the retrospective ensemble Kalman filter (REnKF)
can overcome instabilities in the standard ensemble Kalman filter
(EnKF), solving the time lag between upstream catchment wetness
and flow at the gauging locations. This filter using an iterative
approach to update preceding model states needs large storage
space and computational complexity. An alternative approach is
the ensemble Kalman smoother (EnKS), which was successfully
used by Li et al. (2013a) to improved states and streamflow predic-
tion by considering time delay in the routing process. Although
acceptable results have been achieved, most of these studies only
assimilated one type of observation, such as streamflow.

In this study, we attempt to establish an effective data assimila-
tion scheme (named as EnKF-S) based on the EnKF and the EnKS for
short-term flood forecasting. The novelty of the EnKF-S scheme is
not a simple application of the EnKF or the EnKS, but it is capable
of assimilating multi-source of observations (e.g., soil moisture,
streamflow) with a consideration of the runoff routing lags. In this
scheme, soil moisture observations are used to update current soil
moisture storage and runoff state variables. Considering the impor-
tance of these states in the routing process, the EnKS method is
employed to update current soil moisture, discharge, and runoffs
within a time window when streamflow observations are avail-
able. In order to highlight the advantages of the scheme, another
scheme based the dual EnKF method (named as Dual-EnKF) is
compared.

In the following section, a rainfall–runoff model and the pro-
posed data assimilation scheme are presented with a description
of the synthetic experiments. Section 3 provides the results of
the data assimilation with respect to two typical flood patterns:
flash food and gradual flood. Section 4 discusses the factors that
can impact the data assimilation, and Section 5 presents the
conclusions.

2. Methodology

2.1. Rainfall–runoff model

The Xin’anjiang (XAJ) model is a conceptual hydrological model
widely used for flood forecasting (Li et al., 2013b; Si et al., 2015;
Zhao, 1992). XAJ was developed on the basis of conceptual runoff
generation under saturated condition, which means all rainfall is
stored in the soil until the soil moisture content reaches field
capacity; thereafter, the net rainfall drains out in the form of runoff
without further loss (Zhao, 1995). As shown in Fig. 1, the structure
of the model is divided into four components: evapotranspiration
(ET), runoff generation, runoff separation, and runoff concentration
(Li et al., 2013b).

In the ET simulation, the precipitation input (Prec) and potential
evaporation (PET) are used to drive a three-layer model to calculate
the actual evapotranspiration (ET). The basic principle of this pro-
cess is that evapotranspiration occurs in the upper soil layer until
the water storage in that layer is exhausted; then, the water in the
lower layers will commence to evaporate. The runoff generation
(Ro) is calculated as the following equation:

Ro ¼ PEþW �WM; ð1Þ
where W is the initial soil moisture, PE is the net rainfall calculated
with Prec and PET, and WM is the sum of WUM, WLM, and WDM.
Owing to the spatial variability of the tension water capacity and
free water storage capacity over a basin, the runoff generation
shows diversity at different locations or different times, which
can be described by a storage capacity curve. This curve is demon-
strated as

a ¼ 1� 1� WM0

WMM

� �B

; ð2Þ

where B is a parameter associated with the features of the basin,
and WM0 and WMM are the point water-storage capacity and the
maximum water-storage capacity, respectively. Then in the runoff
separation, the runoff is further divided into three parts: surface
flow (RS), interflow (RI) and ground water (RG). In the runoff routing
process, the convergence speed of runoff in the soil is slower than
that at the surface; therefore, the interflow flow and ground water
will be routed by a linear reservoir before arriving to the outlet of
the catchment. These three runoff components are transferred into
QS, QI, and QG. Finally, a unit hydrograph (UH) is used to simulate
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