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a b s t r a c t

This study focuses on the assessment of biases from infilling missing precipitation data on the detection
of long-term change using parametric and non-parametric statistical techniques. Long-term historical
precipitation data available for almost 100 years at 53 rain gages in south Florida, USA, with gages having
varying lengths of missing data are used for the study. Precipitation data with gaps and time series with
spatial interpolated data are analyzed. Chronologically complete datasets are often used in climate vari-
ability studies by analyzing data in multiple temporal windows. The temporal windows selected in this
work coincide with Atlantic multi-decadal oscillation (AMO) cool and warm phases that strongly influ-
ence precipitation extremes and characteristics in the study region. Selection of these windows has
helped in evaluating the extremes derived based on infilled and unfilled data. The frequency of occur-
rence of precipitation extremes over a pre-specified threshold is also analyzed. Results indicate that
infilled precipitation data introduce large biases in the statistical trends and over and under-estimate
low and high extremes respectively. Evaluation of three extreme precipitation indices (i.e. Rx1day,
R25mm and R50mm) indicates that bias increases with increase in amount of missing data.
Nonparametric hypothesis tests indicate that statistical distributions of data of infilled and unfilled data
are different when the data infilled is more than 5% of the entire data. Infilled data also introduced high
variability in precipitation extremes in AMO cool and warm phases along with the changes in the fre-
quency of occurrence of extreme events over a threshold.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Long-term data on precipitation occurrence, intensity, amount,
and spatial and temporal distribution are vital for the design of
hydrologic structures (such as dams, culverts, detention basins,
etc.), water supply and water quality modeling, and other
hydrologic studies. Assessment of long-term trends in extreme
precipitation data is critical for hydrologic design. An understand-
ing of changing extremes is also essential from climate variability
and change perspectives and requires an extensive evaluation of
trends in entire or temporal slices of historical precipitation data
series. Analysis of long-term extreme precipitation data is essential
to address issues related to expected and observed changes in fre-
quency and intensity of extreme events in response to warming
climate conditions. Several research studies have reported
increases in extreme precipitation and flood events over the

contiguous United States during the last century (e.g. Changnon
and Kunkel, 1995; Karl and Knight, 1998; Kunkel et al., 1999;
Groisman et al., 2001). Recent studies by Teegavarapu et al.
(2013) and Goly and Teegavarapu (2014) have reported compre-
hensive evaluation of spatial and temporal variability of precipita-
tion extremes linked with coupled oceanic-atmospheric
oscillations in the state of Florida, USA. Their studies point to uni-
form and non-uniform spatial variations of precipitation extremes
at different temporal resolutions in their case study region along
with possible influences of regional hydroclimatology on the spa-
tial extent of influences of oscillations on the precipitation charac-
teristics and extremes. Furthermore, strong association of sea
surface temperature (SST) anomalies with regional and global cli-
mate has also been well documented in several studies (e.g.
McCabe et al., 2004; Rogers and Coleman, 2003). The relationship
between SSTs and variability in precipitation over the United
States and other regions of the world has been discussed in several
research studies (Enfield et al., 2001; Goodrich and Ellis, 2008;
Lachniet et al., 2004). Teleconnections described as associations
between climatic variations (i.e., anomalies) at distant locations
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influence regional precipitation patterns in the study region of
interest reported in this paper. Three major teleconnections the
Atlantic Multidecadal Oscillation (AMO), El Niño Southern Oscilla-
tion (ENSO) and Pacific Decadal Oscillation (PDO) heavily influence
precipitation extremes in Florida. A comprehensive study evaluat-
ing links between warm and cool phases of AMO and ENSO to pre-
cipitation characteristics and extremes has been reported recently
by Teegavarapu et al. (2013) and Goly and Teegavarapu (2014).
Spatially non-uniform and uniform influences of AMO and ENSO
respectively on precipitation extremes and characteristics were
noted in the state of Florida. Enfield et al. (2001) demonstrated that
the cool (warm) AMO phases are directly related to the above
(below) normal rainfall over most of the United States except a
few regions in the southeast. Strong correlation of ENSO phases
with the increase (decrease) in precipitation and snowfall over
United States and Canada has been documented in several research
findings (e.g. Groisman and Easterling, 1994; Groisman et al., 1994;
Latif and Barnett, 1994).

In a recent study Teegavarapu et al. (2013) evaluated the influ-
ence of two different phases (warm and cool) of AMO on precipita-
tion extremes in Florida. They concluded that magnitudes of
precipitation extremes from one specific phase (i.e., warm phase)
are higher than those obtained from the two phases combined.
Therefore, it is important that the analysis period for evaluation
of precipitation extremes should include both warm and cold
phases of AMO. Since long-term variations in precipitation data
are of interest in this study, understanding the differences in
extremes values derived from data with gaps and infilled data is
critical. Also, it is essential to investigate if inferences made about
influences of oscillations on these extremes are different when
these data sets with and without gaps are used in climate variabil-
ity studies.

Availability and quality of long-term gap-free precipitation data
at temporal resolutions of day or less required to perform such
analyses are often limited. Long-term precipitation datasets gener-
ally contain gaps due to instrument malfunctioning, inability of
operator to collect data, discontinuity and a variety of other rea-
sons. Statistical analyses of long-term precipitation data require
filling of these data gaps with appropriate values to obtain a seri-
ally complete dataset. Data filling techniques are normally selected
based on location and desired accuracy required for the hydrologic
analyses. Missing data filling methods are also based on consider-
ation given to the nature of missing data defined by one of the
three conditions (Rubin, 1987, 1996; Little and Rubin, 2002;
Graham, 2012): (1) missing at random (MAR); (2) missing com-
pletely at random (MCAR) and (3) missing not at random (MNAR).
The conditions MAR and MCAR generally indicate that the proba-
bility of having a missing observation does not depend on observed
values or unobserved values. MNAR is opposite to the two condi-
tions (i.e., MCAR and MAR). Mapping the mechanisms of for miss-
ing data is generally difficult. One of the most straightforward
definitions for MCAR is ‘‘. . . missingness does not depend on the
values of the data, missing or observed . . .” (Little and Rubin,
2002). This definition is used in the current study.

Spatial interpolation techniques (such as inverse distance
weighted, non-linear, deterministic, stochastic interpolation (e.g.
Kriging) and data-driven methods (regression and time series anal-
yses) are generally used for estimation of missing precipitation
data (Karl and Knight, 1998; Brunetti et al., 2001; Teegavarapu
and Chandramouli, 2005; Teegavarapu, 2009; Teegavarapu, 2013,
2012a). Other available methods include normal-ratio and inverse
distance weighting methods for estimation of missing data (ASCE,
1996; Teegavarapu and Chandramouli, 2005). Kriging in various
forms has been used to estimate missing precipitation data as well
as to interpolate precipitation from point measurements

(Dingman, 2002; Vieux, 2001; Ashraf et al., 1997; Teegavarapu,
2007). Statistical distribution-based missing data estimation meth-
ods (e.g. Brunetti et al., 2001) are also available. Karl and Knight
(1998) and Brunetti et al. (2001) report the use of Gamma distribu-
tion for estimating missing daily precipitation values. Woolhiser
and Pegram (1979), Wilson et al. (1992) and Hanson et al. (1994)
used a bivariate exponential distribution to fill the missing precip-
itation data. Several problems exist with the application of spatial
interpolation methods and some of the major ones are: ‘‘tent pole
effect” (Vieux, 2001; Teegavarapu, 2012b) that refers to existence
of larger values nearer to the control points after estimation,
uncertainty associated with selection of neighbors, use of inappro-
priate variograms in kriging, negative estimates while using artifi-
cial neural network (ANN) methods and thin splines and trend
surface models, arbitrary values assigned to sill and nugget param-
eters in kriging resulting in artifacts in interpolation, observation
value-insensitive variance estimates, and the computational bur-
den to interpolate the surfaces.

Spatial interpolation or temporal interpolation methods can be
used for infilling missing data in precipitation time series. The for-
mer method uses observations available at different sites in a
region for infilling the data at a site with missing data (i.e. base
site), while the latter method employs only data from the site (base
site) itself to infill data. Success of spatial interpolation is attribu-
ted to existence of strong spatial correlation between any site
and base site. Temporal interpolation depends on existence of
serial autocorrelation in precipitation time series for developing
linear or nonlinear interpolation models or autoregressive models.
In some cases, spatial interpolation can only be used as temporal
interpolation fails due to lack of high serial correlation at several
lags in daily precipitation data. Data filling can lead to changes in
the probability distribution of data at a site and introduce signifi-
cant biases when event-based analysis (such as daily or hourly
extreme precipitation analysis) is performed. At temporal resolu-
tions of a day or less, spatial interpolation alters the probability
distribution of data, changes the autocorrelation structure and
dry and wet spell transitions (Teegavarapu, 2014). Many research
efforts have focused on analyzing the trends in precipitation data,
especially extremes, but biases introduced in these trends due to
data infilling techniques are rarely investigated. Previous study
by Teegavarapu (2014) used only a fixed length of missing data
and analyzed the impact of infilling on precipitation characteristics
and extremes. The current study employs: (1) varying lengths of
missing data for evaluation of statistically significant trends; (2)
resampling methods to quantify the impacts of infilling on evalua-
tion of extremes and (3) nonparametric hypothesis tests for assess-
ment for differences in distributions of filled and unfilled
precipitation datasets for different lengths of gaps. All these tasks
were not carried out in the previous study. In this study, long-
term precipitation data collected at 53 National Oceanographic
and Atmospheric Administration (NOAA) rain gages (shown in
Fig. 1) in south Florida, U.S., were analyzed. These data contained
several gaps (missing data of varying lengths at different gages)
and have been infilled using a spatial interpolation technique
(Aly et al., 2009). These serially complete precipitation data are
meant to be used in various hydrological and hydraulics modeling
studies in the region. In this study, the biases introduced due to
infilling of missing data are investigated. Also, the long-term trends
in extreme precipitation indices are evaluated at 14 select rain
gages for the 1945–2006 analysis period where data infilling was
found to be minimal.

The main objectives of the study are: 1) evaluation of bias in
precipitation extremes due to infilling of data gaps; 2) evaluation
of changes in long-term trends in extreme precipitation indices
due to infilling; 3) evaluation of probability distributions of infilled
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