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We apply a stochastic Newton (SN) approach to solve a high-dimensional hydraulic inverse problem in
highly heterogeneous geological media. By recognizing the connection between the cost function of
deterministic optimizations and the posterior probability density of stochastic inversions, the Markov
chain Monte Carlo (MCMC) sampler of SN is constructed by two parts: a deterministic part, which corre-
sponds to a Newton step of deterministic optimization, and a stochastic part, which is a Gaussian distri-
bution with the inverse of the local Hessian as the covariance matrix. The hybrid inverse method exploits
the efficient tools for fast solution of deterministic inversions to improve the efficiency of the MCMC sam-
pler. To address the ill-posedness of the inverse problem, a priori models, generated by a transition-
probability geostatistical method, and conditioned to inter-well connection data, are used as regulariza-
tion constraints.

The effectiveness of the stochastic Newton method is first demonstrated by a synthetic test. The trans-
missivity field of the synthetic model is highly heterogeneous, and includes sharp variations. The inverse
approach was then applied to a field hydraulic tomography investigation in a fractured and karstified
aquifer to reconstruct its transmissivity field from a collection of real hydraulic head measurements.
From the inversions, a series of transmissivity fields that produce good correlations between the inverted
and the measured hydraulic heads were obtained. The inverse approach produced slightly different a pos-
teriori transmissivity patterns for different a priori structure models of transmissivity; however, the trend
and location of the high-transmissivity channels are consistent among various realizations. In addition,
the uncertainty associated with each realization of the inverted transmissivity fields was quantified.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

(Illman et al., 2007; Liu et al., 2007; Sharmeen et al., 2012) and field
experiments (Straface et al., 2007; Illman et al., 2009; Wang et al.,

The hydrodynamic prediction of fluid flow and solute transport
in subsurface aquifers requires the spatial distributions of hydrau-
lic properties, e.g. transmissivity (T) and storativity (S), to be accu-
rately defined. Recently, hydraulic tomography (HT) has been
proven to be an efficient technique for characterizing site-
specific, spatial distributions of transmissivity (e.g. Gottlieb and
Dietrich, 1995; Butler et al, 1999; Yin and Illman, 2009;
Castagna et al., 2011; Klepikova et al., 2013; Illman, 2014). This
method jointly analyses several sets of cross-hole pumping test
data, and therefore integrates more hydraulic information con-
tained in the recorded data (Illman, 2014). The efficiency of HT
has been demonstrated by numerical (Hao et al., 2008), laboratory
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2016).

Numerous inverse methods have been developed for condition-
ing hydrogeology models to observed hydraulic data and assessing
the associated uncertainties (see e.g. Carrera et al., 2005 and Illman,
2014). Among others, the most popular ones are the geostatistical
inverse methods and the stochastic sampling methods. The geosta-
tistical approaches (e.g. Kitanidis and Vomvoris, 1983; Kitanidis,
1995; Yeh et al., 1995, 1996; Kitanidis and Lee, 2014), which for-
mulate the inverse problem as a regularized optimization, are effi-
cient for high-dimensional problems. They have been widely used
in many hydrogeological studies (e.g. Zhang and Yeh, 1997; Hanna
and Yeh, 1998; Zhu and Yeh, 2005; Soueid Ahmed et al., 2014), and
has recently been successfully applied to fractured media (Hao
et al.,, 2008; Illman et al., 2009; Castagna et al., 2011; Sharmeen
etal, 2012; Zhaetal., 2015, 2016). Even though these inverse prac-
tices turn out to be successful, the solutions given by the geostatis-
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tical approaches, in many cases, correspond to local minima, and
often suffer from inadequate exploration of the parameter space
(Bates and Campbell, 2001; Keating et al., 2010).

In recent years, stochastic approaches based on sample-based
Bayesian inference have become popular in aquifer characteriza-
tion (Fu and Gomez-Hernandez, 2009; Vrugt et al., 2008; Mondal
et al,, 2010; Cui et al., 2011). These methods, using Markov chain
Monte Carlo (MCMC) simulations to generate samples from the
posterior target distribution of the model parameters, allowing
for inference of both the unknown parameters and the uncertain-
ties associated with the analysis. Comparing to geostatistical
approach, MCMC simulations allow to avoid local minima and gen-
erate global statistical solutions that do not depend on a priori
models.

In a traditional MCMC simulation that relies on a single-site
updating scheme, a large number of forward model runs (equal
to the number of parameters) are required to perform a single
parameter sweep (Metropolis et al., 1953). The required number
of simulations becomes prohibitive for high-dimensional inverse
models that include a large number of model parameter. A popular
approach to make the sampling adaptive for high-dimensional
models is to construct surrogate models or emulators based on
polynomial approximations (e.g. polynomial chaos or Karhunen-
Loéve expansions) that reduce the dimension of the problem (e.g.
Marzouk and Xiu, 2009; Laloy et al., 2013). The approach is often
improved with a two-stage scheme to achieve better sampling effi-
ciency (Liu, 2001; Dostert et al., 2006; Cui et al., 2011). However,
because of the requirement of smoothness in the model response
fields, the emulator-based methods cannot be applied to highly
heterogeneous media, such as fractured and karstic aquifers where
sharp changes in the spatial distribution of hydraulic head/flux are
commonly observed. Another approach for improving the effi-
ciency of MCMC sampler is to adopt a multivariate proposal den-
sity (e.g. Haario et al., 2006; Fu and Gomez-Hernandez, 2009).
For instance, the delayed rejection adaptive metropolis (DRAM)
MCMC resorts to constructing an approximation to the posterior
covariance matrix to guide the sampling process. Recently, many
authors have proposed hybrid MCMC algorithms, in which local
derivative information (gradient and Hessian for the forward
model) is used in the construction of the proposal density
(Girolami and Calderhead, 2011; Flath et al., 2011; Martin et al.,
2012). Because the proposal distributions are tuned using deriva-
tive information contained in the past chain, the proposal distribu-
tion evolves to the target density much more efficiently. Although
using Hessian information in conditioning MCMC samplers has
been previously considered, most of the applications are restricted
to models with a relatively small number of parameters, or to high-
dimensional linear problems where the derivative information
(gradient and Hessian) is easy to obtain (Flath et al., 2011). The
applicability of the method to complex, nonlinear, hydrogeological
models remains to be demonstrated. Also, there are only a few
MCMC applications in the context of hydraulic tomography
(Oliver et al., 1997; Fu and Gomez-Hernandez, 2009; Jardani
et al., 2012). Therefore, in the present study, we have attempted
to apply a Hessian-based MCMC method, originally proposed in
Martin et al. (2012), to infer the posterior distribution of the
unknown and uncertain parameters in a high-dimensional ground-
water model.

No matter which type of inverse method is applied, inverse
problems have an essential difficulty: non-uniqueness (Tarantola,
2005). Consequently, there are many models can fit the data
equally well. To overcome this difficulty, the inversion models
have to be constrained by a priori information. Conventionally, var-
iogram models are adopted to pose assumptions about the spatial
pattern of the model parameter field, in order to constrain the solu-
tion. However, the classical variogram models based on kriging or

cokriging processes generate smooth spatial patterns. Therefore,
they are not suitable for modelling fractured and karstified media.
To capture the prominent heterogeneous nature and sharp prop-
erty variation of fractured aquifers, indicator geostatistical meth-
ods based on categorical classification are developed (Goovaerts,
1996; Day-Lewis et al., 2000). However, the traditional indicator
approaches require a large amount of transmissivity measure-
ments. In the case where only sparse transmissivity data are avail-
able, the emergent categorical realizations are often geologically
unrealistic (Illman, 2014). An alternative and promising method
to model highly heterogeneous media is the transitional-
probability (TP) based categorical approach (Ritzi et al., 1995;
Carle and Fogg, 1996). The approach employs measured transition
probabilities between different rock types as the weights of their
spatial cross-correlation. The method has been extensively used
in soil surveys and successfully applied to alluvial deposits (Carle
and Fogg, 1997; Weissmann et al., 1999; Weissmann and Fogg,
1999; Lee et al., 2007), glacial deposits (He et al., 2014), and
recently to fractured media (Park et al., 2004; Blessent et al.,
2011). This method has also been used in the present work to gen-
erate a priori transmissivity structure fields, where the salient
heterogeneity and anisotropy of fracture and karst networks are
captured.

Our analysis differs from previous studies (e.g. Park et al., 2004
and Blessent et al., 2011) in how the spatial patterns are generated
from TP geostatistical approach, and are subsequently calibrated to
match hydraulic data. In Park et al. (2004) and Blessent et al.
(2011) a classical two-stage approach (e.g. McKenna and Poeter,
1995; Day-Lewis et al., 2000) is used. In the first stage, the TP spa-
tial patterns generated by fitting geostatistical models (tran-
siograms) and hard data are treated as stochastic continuum
models (i.e. rock type bodies being transformed into stochastic
transmissivity zones for a flow model). In the second stage, for
each realization, a set of mean hydraulic properties of transmissiv-
ity zones is then calibrated to match hydraulic data. In other
words, variation of hydraulic properties within each rock type is
not allowed. In such cases, history matching of hydraulic data
can only be achieved to a limited level where the general trend dis-
played by the data is preserved, while disregarding a large amount
of valuable information that may be crucial to infer fine-scale
heterogeneity.

In our approach, we still follow the two-stage strategy. But, in
the first stage, instead of fitting available sparse transmissivity
estimates to transiogram models, we specify the explicitly the
embedded transition probability matrix, based on integrated
hydrogeological interpretation, to derive Markovian categorical
rock-type realizations (Section 3.1). The stochastic realizations
are conditioned to transmissivity estimates and inter-borehole
connectivity both are determined from field cross-hole pumping
tests. In the second stage, the generated TP realizations is used as
a priori structural model of transmissivity, and we then apply a
hybrid MCMC method (Section 3.2) to statistically infer the spa-
tially varying transmissivity (mean and variance) of grid cells in
selected parameter zones. In this sense, our inversion approach is
based on an equivalent porous medium representation.

2. Field site and numerical model
2.1. Site description and main hydraulic dataset

The location of this study is the Terrieu experimental site,
which is located in the Montpellier region, Southern France
(Fig. 1). The field site has a surface area of 1500 m?
(30m x 50m), and contains 22 boreholes that were drilled
through the Cretaceous marly limestones of the Lez aquifer (total
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