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This work extends the multi-temporal approach of the Model Conditional Processor (MCP-MT) to the
multi-model case and to the four Truncated Normal Distributions (TNDs) approach, demonstrating the
improvement on the single-temporal one. The study is framed in the context of probabilistic Bayesian
decision-making that is appropriate to take rational decisions on uncertain future outcomes. As opposed
to the direct use of deterministic forecasts, the probabilistic forecast identifies a predictive probability
density function that represents a fundamental knowledge on future occurrences. The added value of
MCP-MT is the identification of the probability that a critical situation will happen within the forecast
lead-time and when, more likely, it will occur.

MCP-MT is thoroughly tested for both single-model and multi-model configurations at a gauged site on
the Tiber River, central Italy. The stages forecasted by two operative deterministic models, STAFOM-RCM
and MISDc, are considered for the study. The dataset used for the analysis consists of hourly data from 34
flood events selected on a time series of six years.

MCP-MT improves over the original models’ forecasts: the peak overestimation and the rising limb
delayed forecast, characterizing MISDc and STAFOM-RCM respectively, are significantly mitigated, with
a reduced mean error on peak stage from 45 to 5 cm and an increased coefficient of persistence from
0.53 up to 0.75.

The results show that MCP-MT outperforms the single-temporal approach and is potentially useful for
supporting decision-making because the exceedance probability of hydrometric thresholds within a fore-
cast horizon and the most probable flooding time can be estimated.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

future events (Todini, 2004; Montanari and Koutsoyiannis, 2012).
Many contributions on the assessment of the uncertainty of hydro-

The severe effects of flood events are mitigated through
structural measures often used along with complementary non-
structural measures, such as Flood Forecasting and Warning Sys-
tems (FFWSs) able to provide monetary benefits and improvement
of the population resilience (Pappenberger et al., 2015).

Real-time flood forecasting modelling is an essential compo-
nent of FFWSs, providing important information on the future evo-
lution of floods, i.e. stage and/or discharge forecasts useful for
addressing decision-making for flood risk mitigation. The predic-
tions of all flood forecasting models are affected by many errors
thus leaving the decision-maker with residual uncertainty on
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logical predictions have been made available in the scientific liter-
ature, often focused on the identification of the different sources of
uncertainty (Krzysztofowicz, 2002; Montanari and Brath, 2004;
Clark and Slater, 2006; Vrugt and Robinson, 2007; Ebtehaj et al.,
2010; He et al., 2011; Legleiter et al., 2011; Sikorska et al., 2012,
just to cite a few). Moreover, the ensemble prediction approach
has been investigated and applied in hydrology (Thielen et al.,
2008; Cloke and Pappenberger, 2009; Addor et al, 2011;
Regonda, 2013) by taking advantage from the fast available com-
puting resources to generate many ensembles as an alternative
to the full probability density function. Ensemble approaches were
in particular advocated by the Hydrologic Ensemble Prediction
EXperiment (HEPEX, www.hepex.org) addressed to develop
useful hydrologic ensemble forecast procedures within global
and multidisciplinary collaborations. Also, multivariate post-
processing methods have been applied to deterministic or
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ensemble predictions, such as the Schaake Shuffle or ensemble
copula coupling (Schaake et al., 2007; Schefzik et al., 2013).

Many studies are now available on assessing probabilistic fore-
casting starting from deterministic forecast by modelling the
uncertainty in single-valued hydrologic forecasts, also dealing with
single-valued forecasts developed for multiple lead-times
(Montanari and Grossi, 2008; Smith et al., 2012; Hoss and
Fischbeck, 2015). However, the introduction of the Hydrological
Uncertainty Processor (Krzysztofowicz, 1999; Krzysztofowicz and
Kelly, 2000) represented a milestone in the estimation of flood pre-
dictive uncertainty (PU) defined as the probability density of a
future outcome conditional on all the available information, usu-
ally provided by model forecasts (Krzysztofowicz, 1999; Todini,
2008; Coccia and Todini, 2011). In the Bayesian decision approach,
PU estimate provides the best knowledge on a future outcome and
is a fundamental tool for reaching appropriate informed decisions.

Various processors for PU estimate have been proposed starting
from Krzysztofowicz (1999) who laid the basis for PU estimation
by introducing the Bayesian Forecasting System (BFS) based on a
set of historical recorded data and one model forecast
(Krzysztofowicz and Kelly, 2000). Among several other approaches
for PU assessment, the Bayesian Model Averaging (Raftery, 1993;
Raftery et al., 2005; Vrugt and Robinson, 2007), an approximation
of the predictive conditional density, can be mentioned. It aims at
assessing the mean and variance of any future value of the predic-
tand conditional upon several model forecasts.

If not appropriately treated, these techniques imply
homoscedasticity of the error, which is assumed independent from
the magnitude of the observed or forecasted values. In real cases,
this assumption leads to a lack of reliability, especially in reproduc-
ing high flows. Recently, to overcome this problem the Quantile
Regression (Koenker, 2005) approach was used (Weerts et al.,
2011), which tries to represent the error heteroscedasticity identi-
fying a linear variation of the quantiles of the PU as a function of
the model forecast magnitude. Multiple Linear Regression
approaches, such as the Model Output Statistics (MOS) (Glahn
and Lowry, 1972; Wilks, 1995) or the EMOS (Ensemble Model Out-
put Statistics) (Gneiting et al., 2005), were also used in the past as
uncertainty post processors in meteorological applications. Some
works also treated the heteroscedasticity by direct transforma-
tions, such as the Box-Cox (Box and Cox, 1964; Franchini et al.,
2011). Moreover, the time dependencies of variance were applied
to seasonal models or long term forecasting models (Wang et al.,
2005) and other state-dependent parameterizations of variance
(Engle, 1982) were also used in hydrological applications along
with data-driven models (Romanowicz et al., 2006) or Kalman fil-
ter approaches (Young et al., 2014).

Following the same ideas of converting both observations and
model(s) predictions into the Normal space as in Krzysztofowicz
(1999), Todini (2008) proposed the Model Conditional Processor
(MCP) for directly estimating the predictive density in a more gen-
eral way, which also allowed for multi-model approaches. More
recently, Zhao et al. (2011) in the General Linear Model Post-
Processor (GLMPP) as well as Wang and Robertson (2011) in their
approach to seasonal flows forecasting used probabilistic proces-
sors based on equations quite similar to MCP. Moreover, MCP
was extended to the multi-model approach by Coccia and Todini
(2011), allowing for a simple predictive density, to be used in deci-
sion, although based on ‘multiple forecasts’ using different predic-
tive models at the same time. Afterwards, to show the strong links
between MCP and the Bayesian Forecasting System (BFS) by
Krzysztofowicz (1999), Todini (2013) also proved that the two
approaches coincide at lag-one forecasts, while MCP outperforms
BFS when extending the forecasts to longer lead-times. The useful-
ness of the MCP has been demonstrated also in other research
areas such as hydrodynamic studies (e.g. Camacho et al., 2015).

Moreover, the MCP was made able to use two joint Truncated
Normal Distributions (TNDs) to improve adaptation to low and
high flows. As pointed out by a number of authors (Weerts et al.,
2011; Coccia and Todini, 2011), the assumption of the joint distri-
bution should take into account errors heteroscedasticity. Weerts
et al. (2011) proposed the Quantile Regression methodology, but
this technique has a few disadvantages. Specifically, the use of
the Quantile Regression requires a high number of parameters
and, hence, there is a high risk to overfit the calibration data with
a consequent loss of generalization ability. Therefore, Coccia and
Todini (2011) proposed to use the Truncated Normal Distributions
(TNDs) in order to differentiate the uncertainty associated to high
flows and low flows.

However, although the basic approach presented by Coccia and
Todini (2011) answers to questions such as ‘What is the probability
that the real water level will be higher than a threshold at 24th hour
from now?’ decision-makers are more eager to provide an answer
to other questions such as ‘What is the probability the threshold will
be exceeded within the next 24 h?* and ‘At what time the threshold
will be more likely exceeded within the next 24 h?’. The multi-
model approach cannot provide answers to these new questions
and a multi-temporal approach must be considered. Assessing
the probability of at least one threshold exceedance “within” a
given time horizon, requires in fact the development of the joint
predictive probability density for all the intervals within the time
horizon. To understand why let us use its analogy with the well
known derivation of the probability of at least one exceedance of
the T years return period flood within the N years of lifetime of a
dyke or a dam. The solution to both problems is defined as 1 minus
the probability of non exceedance, which can be estimated via the
joint probability function. In the extreme values case the joint can
be easily assessed since the yearly maxima occurrences can be rea-
sonably assumed independent and the joint results from the pro-
duct of the marginal distributions. This independence
assumption cannot be made in the case of short term forecasting
where the occurrences are definitely not independent and a proper
joint predictive density assessment is needed. This is why it is not
possible to assess the probability of overtopping “within a speci-
fied time interval” using a single fixed time forecast. The forecast
could be certainly repeated for all the different lead-times in the
specified time interval, but in this way the information on the high
dependence of errors from one interval to the next would be lost.
On the contrary, this dependence is captured by the joint probabil-
ity distribution.

We would also like to stress the advantage for using the pro-
posed MCP-MT approach in the Normal space in order to assess
the joint predictive probability. On the one hand the extension of
single and multi-model MCP to the multi-temporal is straightfor-
ward and computationally efficient, and, on the other hand
because the assessment of the joint distribution via an ensemble
approach would require the generation of an extremely large num-
ber of ensemble members.

The multi-temporal approach was originally introduced by
Krzysztofowicz (2008) for the BFS, but it was rather complex
requiring large computational efforts. Following the same idea,
Coccia (2011) implemented Krzysztofowicz (2008) concepts as a
straightforward modification of the multi-model MCP developed
by Coccia and Todini (2011). Recently, a preliminary application
has been performed for a case study in India for the single-model
configuration (Barbetta et al., 2016).

The multi-temporal approach of MCP is here extended to the
multi-model case and to the 4 TNDs approach for the division of
the data in order to represent the low flows, the rising limbs, the
peak flows and the recession limbs. The processor is thoroughly
investigated to provide appropriate answers to the above
mentioned specific questions also demonstrating the benefits
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