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a b s t r a c t

Hydrometeorological data are needed for obtaining point and areal mean, quantifying the spatial variabil-
ity of hydrometeorological variables, and calibration and verification of hydrometeorological models.
Hydrometeorological networks are utilized to collect such data. Since data collection is expensive, it is
essential to design an optimal network based on the minimal number of hydrometeorological stations
in order to reduce costs. This study proposes a two-phase copula entropy- based multiobjective optimiza-
tion approach that includes: (1) copula entropy-based directional information transfer (CDIT) for cluster-
ing the potential hydrometeorological gauges into several groups, and (2) multiobjective method for
selecting the optimal combination of gauges for regionalized groups. Although entropy theory has been
employed for network design before, the joint histogram method used for mutual information estimation
has several limitations. The copula entropy-based mutual information (MI) estimation method is shown
to be more effective for quantifying the uncertainty of redundant information than the joint histogram
(JH) method. The effectiveness of this approach is verified by applying to one type of hydrometeorological
gauge network, with the use of three model evaluation measures, including Nash–Sutcliffe Coefficient
(NSC), arithmetic mean of the negative copula entropy (MNCE), and MNCE/NSC. Results indicate that
the two-phase copula entropy-based multiobjective technique is capable of evaluating the performance
of regional hydrometeorological networks and can enable decision makers to develop strategies for water
resources management.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Hydrometeorological stations provide basic data on precipita-
tion, water quality, air quality, streamflow and groundwater. The
collected hydrometric data is needed for planning, decision mak-
ing, and operation and management of water resources systems,
including design of dams and reservoirs, flood forecasting, risk
assessment of regional freshwater resources, allocation of water
resources, and development of water distribution systems. An opti-
mally designed network should provide sufficient information for
these needs. There are additional needs for network design, such
as increasing and conflicting water demands, climate change,

long-term benefits, and quantifying the influence of network den-
sity on the precision of hydrological models (Mishra and Coulibaly,
2009). It is therefore desirable to design a hydrometeorological
network that takes into account varied uses and users of hydrom-
eteorological data.

The methodology for determining an appropriate strategy for
spatial sampling of hydrometeorological variables, such as rain-
fall/streamflow, depends on the pre-existing conditions of the
gauge network in the river basin: (1) ungauged, (2) gauged with
not enough rain gauges, or (3) a dense network exceeding the
requirement (Dong et al., 2005). Perhaps the most common net-
works are designed for observations at discrete points in space
and time and to estimate the characteristics of a continuous field
or flux (Pardo-Iguzquiza, 1998). Considerable research has been
done on the design and evaluation of monitoring networks in
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surface water hydrology. The approaches which have been com-
monly used for network design can be summarized as (1) statisti-
cally based methods, (2) spatial interpolation techniques, (3)
information theory-based methods, and (4) hybrid methods.

For over half a century, statistical regression techniques have
been widely applied to locate gauging stations (Moss and Tasker,
1991). The most representative statistical method is the general-
ized least squares (GLS) method which maximizes regional infor-
mation within a limited budget and time horizon (Moss and
Tasker, 1991). Spatial interpolation techniques have been
employed in the hydrometeorological field to get station data
(Camera et al., 2014; Bechler et al., 2015). Geostatistical techniques
and methods are employed to do spatial interpolation on the basis
of characteristics which include global versus local, exact versus
approximate, point-based versus areally-based, and the ability to
consider covariates. The kriging methods, the most well-known
spatial interpolation methods, are composed of two parts: spatial
variation analysis using variograms and calculation of distance
weights for interpolation (Goovaerts, 2000; Li and Shao, 2010;
Adhikary et al., 2015; Zhang et al., 2014; Aalto et al., 2016).
Goovaerts (2000) compared three multivariate geostatistical algo-
rithms by incorporating a DEM (digital elevation model) into the
spatial prediction of rainfall: simple kriging with varying local
means, kriging with an external drift, and co-kriging. It was
observed that prediction would improve if correlated secondary
information, such as a DEM, was taken into account. This observa-
tion corroborated the findings of Creutin and Obled (1982). How-
ever, they were not able to capture nonlinear relationships or
unambiguously identify the directionality of coupling if they were
asymmetric, that is, if variable X influenced variable Y at one time
scale, while variable Y influenced variable X at a different time
scale. These limitations have prevented the use of correlation-
based techniques for robust analysis of complex systems, where
feedback is important, and hydrological frequency analysis should
take non-stationarity into consideration (Liang et al., 2012).

The concept of entropy has been popular in the hydrometeorol-
ogy and water resources literature since the 1970s (Singh, 1997).
The fundamental basis in designing networks based on the entropy
concept is that the gauging stations should have as little transinfor-
mation as possible, meaning that the stations should be indepen-
dent of each other as far as possible. Transinformation is defined

as mutual information in the entropy theory. Husain (1987)
assumed bivariate and multivariate continuous distributions to
determine entropy. Information transmission between station pairs
was calculated for different cases of probability distributions and
on the basis of information maximization, the optimum locations
of stations to be retained were identified. Krstanovic and Singh
(1992a,b) evaluated rainfall networks in Louisiana using joint
entropy and transinformation for which multivariate distributions
were determined using the principle of maximum entropy. Yang
and Burn (1994) proposed directional information transfer index
(DIT) for measuring the information flow between gauging stations
in the network. Entropy-based assessment of water quality moni-
toring networks was done by Ozkul et al. (2000). Markus et al.
(2003) used a hybrid combination of GLS and DIT index by including
a function of the negative net information as a penalty function in
the GLS. The weights of the hybrid combination were determined
to maximize the average correlation with the results of GLS and
DIT. They found that no matter how big differences in entropy val-
ues were when changing the bin size, the ranking of stations in
terms of the difference between the information received and the
information sent remained, in most cases, unchanged. The problem
of the interval size was first analyzed by Amorocho and Espildora
(1973), andwas also used by Steuer et al. (2002) to calculatemutual
information for discrete variables. Evaluating the effect of class
interval size, Singh (1997) found that the entropy value decreased
with increasing class interval size and increasing sampling interval.
Al-Zahrani and Husain (1998) used Shannon entropy to evaluate an
existing hydrological network located in the southwestern region of
the Kingdom of Saudi Arabia and examined its suitability for pro-
viding maximum hydrological information.

Recent years have witnessed the adoption of hybrid methods.
Chen et al. (2008) combined kriging with entropy to determine
the optimum number and spatial distribution of rain gauge sta-
tions in catchments. Mishra and Coulibaly (2014) assessed the
effect of seasonal streamflow information implementing the kernel
density approach for estimating mutual information between
gauging stations. Mahmoudimeimand et al. (2015) used an opti-
mization model based on entropy and kriging using GIS for deter-
mining the number and location of rain gauges. The candidate
stations were those with minimum variance of kriging error and
maximum information entropy.

Nomenclature

Notation
d represents the number of random variables or stations.

For dataset 1, d is 13. For dataset 2, d is 16
n the length of the hydrometric time series; For dataset 1,

n is 132. For dataset 2, n is 366
HðXiÞ marginal entropy of a random variable Xi; If random

variable Xi stands for hydrometric time series data
(rainfall or streamflow) collected at station i, then
HðXiÞ can quantify the information retained by station i

HðX1;X2; . . . ;XdÞ the multivariate joint entropy of random vari-
ables collected at these d stations

pðx1; x2; . . . ; xdÞ; Pðx1; x2; . . . ; xdÞ the joint probability density
function and distribution function of random variables
collected at these d stations

pXi
ðxiÞ; PXi

ðxiÞ the marginal density function and the distribution
function for the hydrometric time series data collected
at station i

u1;u2; . . . ;ud the marginal distribution function of the hydromet-
ric time series data collected at station 1,2,. . .,d respec-
tively; ui ¼ PXi

ðxiÞ

Cðu1;u2; . . . ;udÞ; cðu1;u2; . . . ;udÞ the d-dimensional copula dis-
tribution function, and copula density function

IðXi;XjÞ the mutual information of two random variables Xi and
Xj collected at station i and j

TCðX1;X2; . . . ;XdÞ the total correlation of random variables col-
lected at station 1,2,. . .d respectively

P̂iðxÞ the estimator of the marginal distribution
CDITij represents the fractional information inferred by station

i about j
CDITji represents the fractional information inferred by station

j about i
h the copula parameter
TAt the ‘‘true” areal mean rainfall, t stands for the tth obser-

vation of the hydrometric time series
SAt the sampled areal mean rainfall (or streamflow) from

the gauge combination
NSC the Nash–Sutcliffe Coefficient
MNCE the mean negative copula entropy
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