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a b s t r a c t

Genetic programming (GP) is able to systematically explore alternative model structures of different
accuracy and complexity from observed input and output data. The effectiveness of GP in hydrological
system identification has been recognized in recent studies. However, selecting a parsimonious (accurate
and simple) model from such alternatives still remains a question. This paper proposes a Pareto-optimal
moving average multigene genetic programming (MA-MGGP) approach to develop a parsimonious model
for single-station streamflow prediction. The three main components of the approach that take us from
observed data to a validated model are: (1) data pre-processing, (2) system identification and (3) system
simplification. The data pre-processing ingredient uses a simple moving average filter to diminish the
lagged prediction effect of stand-alone data-driven models. The multigene ingredient of the model tends
to identify the underlying nonlinear system with expressions simpler than classical monolithic GP and,
eventually simplification component exploits Pareto front plot to select a parsimonious model through
an interactive complexity-efficiency trade-off. The approach was tested using the daily streamflow
records from a station on Senoz Stream, Turkey. Comparing to the efficiency results of stand-alone GP,
MGGP, and conventional multi linear regression prediction models as benchmarks, the proposed
Pareto-optimal MA-MGGP model put forward a parsimonious solution, which has a noteworthy impor-
tance of being applied in practice. In addition, the approach allows the user to enter human insight into
the problem to examine evolved models and pick the best performing programs out for further analysis.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

It is well documented that streamflow process is complex and
not easily predictable (Yaseen et al., 2015). This is mainly due to
the non-stationary feature of the phenomenon and highly nonlin-
ear relationship between streamflow and the characteristics of its
catchment (Nourani et al., 2011; Danandeh Mehr et al., 2013).
One of the common ways to model streamflow process is to use
of data-driven techniques, which have the ability to learn about
and extract the nonlinear relationships between the streamflow
and its driving variables. When using such techniques, a sound
knowledge of the underlying physical processes is not prerequisite
(Hundecha et al., 2001; Noori and Kalin, 2016).

Short-term streamflow prediction with a lead time less than (or
equal to) one day is necessary for the real-time flood warning and

reservoir operation systems (Danandeh Mehr et al., 2015). The
application of various data-driven techniques, such as artificial
neural networks (ANN), genetic programming (GP), and fuzzy logic
in short-term streamflow prediction has been extensively evalu-
ated and published in recent years (e.g., Hundecha et al., 2001;
Moradkhani et al., 2004; Kücük and Agiralioglu, 2006; Wang
et al., 2006; Makkeasorn et al., 2008; Shiri and Kisi, 2010; Kisi,
2010; Rezaeianzadeh et al., 2013; Krishna, 2013; Hosseinzadeh
Talaee, 2014; Danandeh Mehr et al., 2015). Regardless of the type
of the data-driven technique employed, prediction accuracy is
highly dependent on the variables used to train and validate the
technique. In most of the flow prediction studies on a short-term
basis, daily rainfall and streamflow records have been used to cre-
ate so-called rainfall-runoff models (e.g., Mutlu et al., 2008;
Nourani et al., 2011, 2012; Shoaib et al., 2015). However, in poorly
gauged basins, where no rainfall record is available, the rainfall-
runoff commonly used models are not applicable. In such cases,
single-station, cross-station, or successive-station runoff-runoff
prediction models have been suggested (e.g., Ochoa-Rivera et al.,
2002; Kisi and Cigizoglu, 2007; Demirel et al., 2009; Besaw et al.,
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2010; Can et al., 2012; Danandeh Mehr et al., 2015). For example,
Kisi and Cigizoglu (2007) developed three ANN-based single-
station prediction models to forecast daily streamflow at two rivers
in Turkey. To this end, daily streamflow observations with one- to
six-day antecedent records (lags) were considered as input vectors
for the ANN. The authors demonstrated that three days lag (i.e.,
three input vectors) is sufficient to achieve the best one-day ahead
streamflow forecasting model in respect of selected performance
criteria. In another single-station streamflow prediction study,
Özger (2009) developed two fuzzy inference systems using daily
streamflow records at Demirkapi Station on Euphrates River, Tur-
key. Based upon strong serial dependence of observational flows,
the author suggested that one- and two-day lags are enough to
train the models. On the basis of auto- and partial autocorrelation
analysis, Hosseinzadeh Talaee (2014) explained that one- to four-
day lags of streamflow records at a station in Aspas Stream, Iran,
are the most appropriate input vectors to train multilayer percep-
tron (MLP) neural networks for one-day ahead streamflow predic-
tion. Most recently, Altunkaynak and Nigussie (2015) combined
the SEASON algorithm with a MLP neural network and demon-
strated that the new hybrid model can be used to extend lead time
of single-station daily streamflow prediction models.

Despite providing acceptable prediction accuracy, none of the
aforementioned studies provided explicit formulation in regard
to single-station streamflow process. To bridge the gap, recent
works have focused on applying GP to discover underlying process
explicitly. Our review showed that only a few studies have investi-
gated capability of GP in short-term streamflow prediction. For
instance, Guven (2009) applied linear GP (LGP) and two versions
of ANN to predict daily flow of Schuylkill River in the USA. The
author demonstrated that the performance of LGP is higher than
that of ANNs. Londhe and Charhate (2010) developed two GP-
based one-day ahead streamflow prediction models at two stations
in Narmada Catchment of India and demonstrated that GP per-
forms superior than ANN and model trees. Although classical GP
has been implemented in a few other streamflow modelling stud-
ies (e.g., Ni et al., 2010; Nourani et al., 2012, 2013b), at the best of
our knowledge, no study has yet been conducted to assess the
potential of multigene topology in GP, i.e., MGGP, for single-
station daily streamflow prediction. Moreover, previous studies
have investigated the effectiveness of GP mostly in terms of predic-
tion accuracy and thus, additional studies are required to address
problems associated with complexity of the proposed models. In
this sense, this paper, for the first time, proposes a Pareto-
optimal moving average multigene genetic programming (Pareto-
optimal MA-MGGP) model to develop a parsimonious (accurate
and simple) model for single-station streamflow prediction. The
model is applied for daily streamflow prediction at Senoz Catch-
ment in Turkey, and its performance is compared with those of
stand-alone GP, MGGP, and conventional multivariable linear
regression (MLR) prediction models as benchmarks. From practical
point of view, the proposed model is explicit and parsimonious so
that motivating to be used in practice.

2. Genetic programming (GP)

The state-of-the-art GP is of the most popular data-driven tech-
niques that evolves computer programs to automatically solve
problems using Darwinian natural selection (Koza, 1992). The task
is done by randomly generating a population of computer pro-
grams and then breeding together the best performing programs
to create a new population (offspring). Mimicking Darwinian evo-
lution, this process is iterated until the population contains pro-
grams that solve the task well (Searson, 2015). In hydrological
applications, GP is commonly used to infer the underlying struc-

ture of either natural (e.g., Ghorbani et al., 2010; Danandeh Mehr
et al., 2013; Nourani et al., 2013b; Sattar and Gharabaghi, 2015;
Meshgi et al., 2015; Ravansalar et al., 2016) or experimental (e.g.,
Selle and Muttil, 2011; Khan et al., 2012; Uyumaz et al., 2014) pro-
cesses. In such applications, GP generates some possible programs
(solutions) representing the underlying process mathematically.
When the task is to build an empirical model of data acquired from
a process or system, GP is often known as symbolic regression
(Searson, 2015). GP is a self-structuring technique without requir-
ing the user to know or specify the form of the solution in advance.
It differs from either traditional regression analysis or other data-
driven techniques, in which modeller must specify the structure
of the given process. As shown in Fig. 1, potential programs are
usually represented by tree structures with a root node, inner
node(s), and leaves. Population of initial solutions is generated
through a random processes such as full, grow, and Ramped half-
and-half methods (Poli et al., 2008). Subsequent generations are
commonly evolved through three genetic operators, namely repro-
duction, crossover, and mutation (Babovic and Keijzer, 2000).
Reproduction is copying an existing population into the new pop-
ulation without alteration. Crossover is replacing the preferable
parent’s chromosome to produce an offspring and mutation is
replacing a randomly selected functional or terminal node with
same node from the preferable parents. An example of crossover
and mutation operators to generate two new population (off-
spring) is presented in Fig. 2.

The major inputs for a standard GP modelling are: (i) patterns
for training/validation; (ii) fitness function (e.g., mean square
error) for tournament selection; (iii) functional (or inner nodes)
and terminal (or leaves) sets for structural identification; and (iv)
GP parameters for formation of a syntax tree (i.e., a program/
potential solution). Depends on the degree of complexity of the
process of interest, the functional set may contain the basic arith-
metic operators (i.e., +, �, �, �) or more complicated mathematical
operators such as Sin, Exp, and others. In order to generate an ini-
tial program, an operator is chosen randomly from the predefined
functional set to fill the root node. Then, inner nodes are filled ran-
domly by a member of the either functional or terminal sets.
Finally, leaves are filled by only predefined members of terminal
set that may comprise independent variables, numerical/logical
constants, or arguments for the applied functions. Owing to the
probabilistic essence of GP approach, it is possible to derive a large
number of potential solutions (functional expressions) for a prob-
lem. An experienced GP modeller can choose the best solution in
different ways. For example, a Pareto-optimal solution (explained
in Section 4) can be selected with respect to the both accuracy
and complexity of potential solutions. Details on GP and its appli-
cations can be obtained from Gandomi et al. (2015).

2.1. Multigene genetic programming (MGGP)

In recent years, several advancements for classical GP (i.e., tree-
based genotype also called monolithic GP) such as linear GP (LGP),
multigene GP (MGGP), multi-expression programming (MEP), and
gene expression programming (GEP) have been suggested. All
these variants have a clear distinction in their genotype. A number
of researchers have reported successful application of different
genotype in GP (e.g. Brameier and Banzhaf, 2007; Guven, 2009;
Danandeh Mehr et al., 2013, 2014a,b; Shoaib et al., 2015; Zorn
and Shamseldin, 2015).

MGGP (Searson, 2009) is of the most recent advancements of GP
that linearly combines low depth GP trees in order to improve fit-
ness of classical GP. Owing to the use of smaller trees, the MGGP is
expected to provide simpler models than those of classical GP
(Searson, 2015). In MGGP, predictand variables are computed by
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