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a b s t r a c t

Several evidences of hydrologic data series being nonstationary in nature have been found to date. This
has resulted in the conduct of many studies in the area of nonstationary frequency analysis.
Nonstationary probability distribution models involve parameters that vary over time. Therefore, it is
not a straightforward process to apply conventional goodness-of-fit tests to the selection of an appropri-
ate nonstationary probability distribution model. Tests that are generally recommended for such a selec-
tion include the Akaike’s information criterion (AIC), corrected Akaike’s information criterion (AICc),
Bayesian information criterion (BIC), and likelihood ratio test (LRT). In this study, the Monte Carlo simu-
lation was performed to compare the performances of these four tests, with regard to nonstationary as
well as stationary generalized extreme value (GEV) distributions. Proper model selection ratios and sam-
ple sizes were taken into account to evaluate the performances of all the four tests. The BIC demonstrated
the best performance with regard to stationary GEV models. In case of nonstationary GEV models, the AIC
proved to be better than the other three methods, when relatively small sample sizes were considered.
With larger sample sizes, the AIC, BIC, and LRT presented the best performances for GEV models which
have nonstationary location and/or scale parameters, respectively. Simulation results were then evalu-
ated by applying all four tests to annual maximum rainfall data of selected sites, as observed by the
Korea Meteorological Administration.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Frequency analysis plays an important role in the hydraulic
structure design process as well as in the management of water
resources. It utilizes appropriate probability distribution models
to estimate hydrologic quantiles. Frequency analysis assumes that
data is both independent and stationary, i.e., data and its statistical
characteristics do not vary over time. Industrialization and
urbanization influence change in climatic conditions, and this has
caused hydrologic and meteorological data to become nonstation-
ary (Jain and Lall, 2000, 2001; Katz et al., 2002; Milly et al., 2008;
Olsen et al., 1999). For example, statistics such as quantiles of
hydrologic data, and parameters of probability models may change
over time. However, there has been much controversy over the
concept of nonstationarity in water resources management and
planning. Milly et al. (2008) asserted that nonstationary probabilis-
tic models should be identified and applied because anthropogenic
climate change is affecting the extremes of hydrological variables

(e.g., precipitation, streamflow and evapotranspiration). In con-
trast, several scholars have emphasized that the careless applica-
tion of nonstationarity could lead to the underestimation of
variability, uncertainty and risk (Koutsoyiannis, 2011; Lins and
Cohn, 2011; Montanari and Koutsoyiannis, 2014; Serinaldi and
Kilsby, 2015). Nonetheless, various studies on nonstationarity for
hydrological modeling are still being conducted to predict future
events under changing environmental conditions. There have been
many studies focusing on nonstationary frequency analysis that
primarily takes into account covariates, such as time, temperature,
and climate indices. Examples of climate indices are Pacific
Decadal Oscillation (PDO), Southern Oscillation Index (SOI),
Mediterranean Oscillation Index (MOI), North Atlantic Oscillation
(NAO), Sea Level Pressure (SLP), and Sea Surface Temperature
(SST). These covariates are used to determine parameters of prob-
ability distribution models (Brown et al., 2008; Coles, 2001; Griffis
and Stedinger, 2007; Katz et al., 2002; Sugahara et al., 2009;
Tramblay et al., 2013; Vasiliades et al., 2015; Wang et al., 2004;
Wi et al., 2015).

Extreme value theory is a branch of statistics that focuses on the
extreme events and the tail behavior of a distribution. The theory
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uses the block maxima approach to derive Extreme Value (EV) dis-
tributions, including the Fréchet, Weibull, and Gumbel distribu-
tions. The GEV distribution unifies the three abovementioned EV
distributions. In nonstationary frequency analysis, nonstationary
GEV distributions have been proposed and widely used (Cannon,
2010; Coles, 2001; El Adlouni et al., 2007; Kharin and Zwiers,
2005; Leadbetter et al., 1983; Mailhot et al., 2010; Nadarajah,
2005; Vasiliades et al., 2015; Wang et al., 2004; Wi et al., 2015).
The nonstationary GEV models proposed by Nadarajah (2005),
Vasiliades et al. (2015), and Wi et al. (2015) have been used to con-
duct nonstationary frequency analysis of the annual maximum
rainfall series, using time as a covariate.

In conventional frequency analysis, the v2 test, Kolmogorov–
Smirnov (KS) test, Cramér von Mises (CVM) test, probability plot
correlation coefficient (PPCC) test, Anderson-Darling test, and
modified Anderson-Darling test have been used to examine the
goodness-of-fit (GOF) for probability models (Heo et al., 2013). In
addition to these GOF tests, model prediction error measured by
the bootstrap or cross-validation has been used to select an appro-
priate probability model (Laio et al., 2009; Smyth, 2000). Burnham
and Anderson (2002) and Zucchini (2000) introduced and
expounded these techniques for model selection. In nonstationary
frequency analysis, however, it is not simple to apply goodness-of-
fit tests to nonstationary probability distribution models involving
parameters that vary with time since these tests should be per-
formed at each time step. Therefore, many studies alternatively
recommend the Akaike’s information criterion (AIC), corrected
Akaike’s information criterion (AICc), and Bayesian information
criterion (BIC) for the selection of appropriate nonstationary mod-
els (Cannon, 2010; Strupczewski et al., 2001a,b; Sugahara et al.,
2009; Villarini et al., 2009, 2010). These criteria are straightforward
and allow for selecting an appropriate model if the maximized like-
lihood is calculated. Strupczewski et al. (2001a,b) used the AIC to
select the most efficient model out of several nonstationary flood
frequency models. Sugahara et al. (2009) applied the AICc
(Hurvich and Tsai, 1995) and the rAICc (Burnham and Anderson,
2004) to select the most efficient model out of four nonstationary
generalized Pareto distributions. Villarini et al. (2009, 2010)
employed the AIC and the BIC to find the degrees of freedom for
the Generalized Additive Models of Location, Scale, and Shape
parameters (GAMLSS) in a nonstationary framework. Cannon
(2010) identified an appropriate nonstationary GEV model using
the AICc and the BIC. Vasiliades et al. (2015) identified an appropri-
ate nonstationary GEV model using the AICc and the BIC.

Alternatively, the Likelihood Ratio Test (LRT) has been used in
several studies (Clarke, 2002; El Adlouni et al., 2007; García
et al., 2007; Katz, 2013; Kharin and Zwiers, 2005; Mailhot et al.,
2010; Nadarajah, 2005; Tramblay et al., 2013; Wang et al., 2013),
and has been recommended for the selection of an appropriate
nonstationary extreme value model (Coles, 2001). Clarke (2002)
proposed the Gumbel distribution, involving time as a covariate,
and used Generalized Linear Models (GLMs) to fit trend parame-
ters. The LRT was applied to evaluate the goodness-of-fit for the
GLMs. Kharin and Zwiers (2005) also evaluated nonstationary
GEV models by performing the LRT. Nadarajah (2005), El Adlouni
et al. (2007), and Wang et al. (2013) proposed several nonstation-
ary GEV models, and determined the most efficient one by using
the LRT. García et al. (2007) conducted the LRT to draw a compar-
ison between stationary and nonstationary GEV models. Mailhot
et al. (2010) employed the LRT to compare the nonstationary
Ensemble Members (EM) and Annual Maximum (AM) models.
Katz (2013) used the AIC, the BIC, and the LRT to select appropriate
nonstationary models. Tramblay et al. (2013) selected an appropri-
ate nonstationary Peaks-Over-Threshold (POT) model with the
help of the LRT.

The abovementioned studies are only a few ones that compare
various model selection criteria to determine an appropriate non-
stationary GEV model. Although Stone (1979) described the funda-
mental characteristics and comparative performance of the AIC
and BIC, no specific standards have been set to determine the best
criterion for such a model. Therefore, it is likely that an inappropri-
ate model may be selected under nonstationary conditions, and
this makes it necessary to determine the most appropriate crite-
rion. Panagoulia et al. (2014) conducted a simple simulation study
to evaluate the performances of the AICc and BIC for nonstationary
GEV models. However, their results were limited to specific sample
sizes and simulation conditions. To get more general results, this
study compares the performances of the AIC, the AICc, the BIC,
and the LRT, using the Monte Carlo simulation for various sample
sizes as well as location, scale, and shape parameters based on
stationary and nonstationary GEV distributions. To evaluate the
simulation results, the AIC, AICc, BIC, and LRT were applied to
the stationary and nonstationary GEV models fitted to the
observed annual maximum rainfall data.

2. Model selection criteria

A number of methods can be applied to select appropriate non-
stationary models. Of these, the AIC, the AICc, the BIC, and the LRT
have been recommended the most. In this study, these tests were
applied to various stationary and nonstationary GEV models.

2.1. Nonstationary GEV models

The GEV distribution is widely used for extreme values and
includes location, scale, and shape parameters (Lettenmaier and
Burges, 1982). The Probability Density Function (PDF) and the
Cumulative Density Function (CDF) of the GEV distribution are rep-
resented by Eqs. (1) and (2), respectively.
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where, l, rð> 0Þ, and n are the location, scale, and shape parame-
ters, respectively.

In a nonstationary GEV distribution, the GEV parameters can be
expressed as various forms of time-dependent function. In this
study, the location and scale parameters are expressed as a linear
function of time (t), as represented by Eqs. (3) and (4), respectively.
It can simply present the increasing or decreasing trend of the loca-
tion and scale parameters interrelated with the mean and variance
of the observed data.

lðtÞ ¼ l0 þ l1t ð3Þ

rðtÞ ¼ expðr0 þ r1tÞ ð4Þ
The location parameter varies linearly with time, whereas the

scale parameter varies exponentially with time since it is greater
than zero (Coles, 2001). For the GEV model, it is difficult to

Table 1
Applied stationary and nonstationary GEV models.

Model Location parameter Scale parameter Shape parameter

GEV(0,0,0) l r n
GEV(0,1,0) l exp (r0 + r1t) n
GEV(1,0,0) l0 + l1t r n
GEV(1,1,0) l0 + l1t exp (r0 + r1t) n
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