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a b s t r a c t

This study assessed the capacity of semi-parametric regression models to predict riverine solute concen-
trations during extreme high-flow hydrologic events, when such events are absent from the models’ cal-
ibration data. Using a large dataset from 459 monitoring stations across the US Northeast, the models
showed a tendency to overpredict extreme-event concentrations, with increasing bias and variance for
increasingly extreme hydrologic conditions. The validation framework in this study effectively compared
model performance across disparate hydrologic regimes and constituents, yet can be used to estimate
individual model performance under an unobserved extreme-flow condition, regardless of whether
any extreme-flow data are available for that model. The validation procedure can further be generalized
to explore model performance in an arbitrarily defined extreme condition for a broad range of model
types. Despite an overall increase in uncertainty for extreme-event concentration estimates, estimates
under extreme hydrologic conditions could be improved by taking into account the observed bias in
the aggregated regional database.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Concentration and mass flux of riverine constituents are two
environmental parameters that are of high social and environmen-
tal interest, yet difficult to measure with satisfactory time resolu-
tion. This has led to widespread modeling efforts that attempt to
fill in the resulting gaps in the observed time series, typically using
regression models –often referred to as ‘‘rating curves”– that esti-
mate log-transformed concentration or mass flux as a function of
more easily measured variables including discharge.

The empirical (and explicit, in the case of mass flux) relation-
ships with hydrological variables on which such models rely lead
to a natural focus on moments of large variations in flow, i.e. on
storm conditions. These periods constitute transport ‘‘hot
moments” (Vidon et al., 2010) for many riverine constituents,
and are responsible for transporting over half of all mass loads in
many cases (Raymond and Saiers, 2010). Several recent extreme
high-flow events in the US Northeast, including Hurricanes Irene
(August 2011) and Sandy (October 2012) have prompted increased
scientific attention on the impacts such events have on transport of
constituents including nutrients (Yoon and Raymond, 2012),

organic matter (Caverly et al., 2013; Dhillon and Inamdar, 2013,
2014), and suspended sediment (Yellen et al., 2014). Several of
these studies point to disproportionately large exports during such
events, exceeding model predictions. However, these studies focus
primarily on quantifying exports from individual storms and do
not make a systematic assessment of model performance under
such extremes.

A guiding principal for hydrologic modeling was stated in
Klemeš (1986) – ‘‘Before it is used operationally, a model must
demonstrate how well it can perform the kind of task for which
it is intended”. As modelers increasingly seek to predict impacts
of previously unobserved weather and climate conditions (e.g.
Carpenter et al., 2015), empirical constituent models may be used
to predict water-quality responses to a hypothetical extreme storm
event, or to estimate unmeasured conditions during an actual
event. Other environmental modeling disciplines have attempted
to establish the range of climatic conditions under which their
models yield acceptable results (Andréassian et al., 2009; Coron
et al., 2012), but to date no systematic assessment has been made
of rating-curve models under extreme hydrologic conditions.

This study addresses the question of how well a rating-curve
model makes predictions in extreme-flow conditions, given that
such conditions are beyond the range seen in its calibration data.
Before addressing this question, it is useful to lay out some of the
assumptions upon which rating-curve models rest.
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� The mean (llnC) of the random variable representing log-
transformed concentration (lnC) is a function of log-
transformed flow and other variables such as season and time.
The mean can thus be written conditionally on a set of measur-
able variables X: llnCjX . As predictors in a regressionmodel, these
variables explain a portion of the variance in the modeled quan-
tity (i.e. the ‘‘response variable”); knowing the value of the pre-
dictors reduces the uncertainty in the response. In most cases,
the functional relationships are assumed to be linear or quadra-
tic with respect to a transformation of the predictors (e.g. loga-
rithm for flow, harmonic for season; (Cohn et al., 1992)). These
assumptions can lead to model bias where they are incorrectly
applied (Hirsch, 2014), and other functional forms have been
introduced in extensions of the linear model (Autin and
Edwards, 2010; Hirsch et al., 2010; Wang et al., 2011).

� The variance (r2
lnC) and standard deviation (rlnC) of log-

transformed concentration are constant for all times and flow
conditions. In practice, some datasets have shown this to be a
poor assumption, potentially biasing the estimated parameters
of the resulting rating curve. Concentration is typically assumed
to follow a log-normal distribution, i.e. lnC � NðllnC ;r2

lnCÞ
(Esmen and Hammad, 1977; Helsel and Hirsch, 2002); this facil-
itates bias correction of concentration and flux estimates when
retransforming from log-space.

One mathematical consequence of these assumptions is that the
standard deviation of concentration (rCjX) is directly proportional
to the conditional mean, implying that larger estimates have larger
uncertainty. In the case of log-normality, the proportionality con-
stant grows exponentially with increasing r2

lnC , the variance of

lnC, about its conditional mean: rCjX ¼ ðer2
lnC � 1Þ

1
2lCjX . As a result,

concentration estimates during large hydrologic events are inher-
ently more uncertain than those for less extreme events, whereas
estimates of log-transformed concentration have similar precision
for all conditions.

The asymmetric distribution of the concentration random vari-
able introduces a bias in retransforming predictions of lnC from
log-space. Therefore, while model validity in predicting lnC is a
necessary condition for validity in predicting concentration (and
by extension, mass load), it is not a sufficient one. Various methods
exist to address retransformation bias, some relying on distribu-
tional assumptions and others that do not (Cohn et al., 1989).
Nonetheless, the performance of a rating-curve model as explicitly
defined—as a predictor of lnC—must first be established before
considering retransformation bias.

This study therefore sought to evaluate whether semiparamet-
ric rating-curve predictions of lnC retain their predictive capacity
in extreme high-flow events, relative to their performance in less
extreme conditions. As such, metrics of model performance (e.g.
bias, goodness-of-fit) are defined herein with respect to log-
transformed concentration, rather than the retransformed values
of interest. We pay specific attention to the supposition of thresh-
olds beyond which constituent behavior undergoes fundamental
changes (Dhillon and Inamdar, 2013, 2014), rendering models
inaccurate (Yoon and Raymond, 2012). We further make recom-
mendations about the collection, management, and dissemination
of water-quality data in order to improve large-scale data-driven
studies.

2. Materials and methods

2.1. Data acquisition

Concentration data for streams in the US Northeast were
obtained from the National Water Quality Monitoring Council

Water Quality Portal (http://www.waterqualitydata.us/). The ini-
tial database query extracted all water-quality data for selected
constituents from streammonitoring stations located in the North-
east US between 36�N and 48�N latitude and between 81�W and
66�W longitude (Fig. 1). Daily discharge data for water-quality
monitoring sites were obtained from the US Geological Survey
(USGS) National Water Information System (NWIS). The data were
filtered to include only the datasets with at least 30 concurrent
measurements of concentration and discharge for a given station
and constituent. A total of 2747 datasets were obtained from 459
monitoring stations, with each dataset representing a unique com-
bination of constituent (nutrients such as nitrogen and phospho-
rus, organic carbon, and total suspended solids), fraction
(dissolved, suspended, or total), and monitoring station (Table 1).
In some cases where it was not explicitly provided the ‘‘sus-
pended” fraction was calculated from the difference between ‘‘to-
tal” and ‘‘dissolved” fractions, while the fractions of certain
dissolved constituents reported as ‘‘total” were discarded following
USGS recommendations (Rickert, 1992). Each dataset contained
between 31 and 3098 concurrent (same day) observations of con-
centration, daily average flow, and date of measurement.

2.2. Model development

A semiparametric rating-curve model (Wang et al., 2011;
Kuhnert et al., 2012) was calibrated to each discharge-
concentration dataset using the gam function in the mgcv R pack-
age (Wood, 2011). This model is similar to a traditional rating-
curve, in which log-transformed concentration is linearly regressed
on log-transformed discharge and other variables representing
seasonal and long-term fluctuations. The main difference is that
functional relationships may be arbitrarily nonlinear. The model
has the form

lnC ¼ s1ðlnQÞ þ s2ðdoyÞ þ s3ðtimeÞþ 2 ð1Þ

where lnC is log-transformed concentration; lnQ is log-transformed
flow; doy is the numeric day of the year, (1–365 or 1–366); time is
the time of observation in days from the mean observation time;
and 2 is a zero-mean, constant-variance error term. The functions
s1ðÞ, s2ðÞ, and s3ðÞ are nonparametric smooth-functions based on
cubic splines (Wood, 2006). Each smooth function includes an addi-
tional parameter, k, dictating the maximum degrees of freedom
allowed in the function. The k values used in this study restricted
lnQ and doy to each have a maximum of 3 degrees of freedom, while
an automatically selected default k value was used for time (Wood,
2003). As a comparison, the ‘‘7 parameter” Load estimator (LOAD-
EST) model (Cohn et al., 1992) allows 2 degrees of freedom for each
lnQ and (harmonically transformed) doy. An advantage of GAMs is
that they seldom use the full allowed degrees of freedom; models
in this study had a median ‘‘effective” degrees of freedom of 8.8,
slightly greater than the ‘‘7-parameter” LOADEST model’s 7 degrees
of freedom, with the lnQ term using 2.1 effective degrees of freedom
on average. The nonparametric smooth functions behave similarly
to (but mathematically differ from) locally weighted regression,
such as that employed in Weighted Regression on Time, Discharge,
and Season (WRTDS) (Hirsch et al., 2010). Contrary to WRTDS, the
smooth functions s1ðÞ, s2ðÞ, and s3ðÞ are assumed independent of
one another. Although other rating-curve models have used covari-
ates other than time, season, and discharge, these three are by far
the most commonly used (Hirsch, 2014).

2.3. Differential split-sample test

In order to simulate model performance in a previously unob-
served extreme hydrologic condition, a calibration-validation
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