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a b s t r a c t

The real fluid flow in porous media is consistent with the mass conservation which can be described by
the nonlinear governing equation including the quadratic gradient term (QGT). However, most of the flow
models have been established by ignoring the QGT and little work has been conducted to incorporate the
QGT into the flow model of the multiple fractured horizontal (MFH) well with stimulated reservoir vol-
ume (SRV). This paper first establishes a semi-analytical model of an MFH well with SRV including the
QGT. Introducing the transformed pressure and flow-rate function, the nonlinear model of a point source
in a composite system including the QGT is linearized. Then the Laplace transform, principle of superpo-
sition, numerical discrete method, Gaussian elimination method and Stehfest numerical inversion are
employed to establish and solve the seepage model of the MFH well with SRV. Type curves are plotted
and the effects of relevant parameters are analyzed. It is found that the nonlinear effect caused by the
QGT can increase the flow capacity of fluid flow and influence the transient pressure positively. The rel-
evant parameters not only have an effect on the type curve but also affect the error in the pressure cal-
culated by the conventional linear model. The proposed model, which is consistent with the mass
conservation, reflects the nonlinear process of the real fluid flow, and thus it can be used to obtain more
accurate transient pressure of an MFH well with SRV.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The multiple fractured horizontal (MFH) well is considered as
the most effective well type for the ultra-low permeability reser-
voirs to increase production at a low cost. Massive hydraulic frac-
turing can not only generate a few of highly conductive hydraulic
fractures intersected with the horizontal wellbore, but also create
an induced fracture network named as stimulated reservoir vol-
ume (SRV) (Mayerhofer et al., 2006; Clarkson, 2013; Zhao et al.,
2014). The permeability of the SRV is much higher than that of
the reservoir formation, and so the existence of the SRV region
can significantly improve the well performance (Mayerhofer
et al., 2010; Guo et al., 2016).

A great deal of work has been conducted to develop flow mod-
els of MFH wells in different reservoir scenarios, but most of them
focus on the models without considering the effect of the SRV
(Wan, 1999; Wan and Aziz, 2002; Luo et al., 2014; Wang, 2014;
Ren and Guo, 2015a,b). Recently, as the massive-hydraulic-
fracturing technology is widely applied to develop the ultra-low

permeability reservoirs, especially shale gas reservoir, the seepage
models of MFH wells with SRV have attracted great attention. The
seepage models of MFH wells with SRV fall into three main types
(Chen et al., 2015): (1) analytical models, mainly including the
tri-linear flow model (Ozkan et al., 2011) and its improved models
(Stalgorova and Mattar, 2012; Tian et al., 2014; Zheng et al., 2017),
have been successfully used to simulate the early linear flow of
MFH wells with SRV, but it cannot capture some flow characteris-
tics such as the radial flow and the interferences between the
hydraulic fractures; (2) numerical models with different numerical
simulation methods, such as the finite element method (Fan et al.,
2015) and boundary element method (Zhao et al., 2016), have been
employed to investigate the performance of MFH wells with differ-
ent shaped SRV. However, time-consuming and the difficult of
gridding make numerical models less attractive (Chen et al.,
2015); (3) semi-analytical models (Zhao et al., 2014; Jia et al.,
2015, 2016; Xu et al., 2015; Guo et al., 2016) not only capture
the complete flow characteristics of MFH wells with SRV but also
have much higher computational efficiency than numerical mod-
els. Therefore, semi-analytical models have recently gained much
attention. However, to our knowledge, almost all models of MFH
wells with SRV, especially the analytical/semi-analytical models,
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are established and solved by ignoring the quadratic gradient term
(QGT) in the governing equation, which makes the models be
inconsistent with material balance and may lead to significant
errors in the predicted pressure. Unfortunately, there is no work
to investigate the effect of such approximation with ignoring the
QGT on the predicted pressure of MFH wells with SRV.

During the last decades, much attention has been paid to the
nonlinear flow models with the QGT. Finjord (1986) first intro-

duced a functional transformation to linearize the nonlinear gov-
erning equation including the QGT. Chakrabarty et al. (1993)
proposed a radial flow model with the QGT to quantitatively ana-
lyze the impact of the QGT on the pressure distribution during
constant-rate or constant-pressure injection. Bai et al. (1994)
developed a flow model for vertical wells in dual-porosity reser-
voirs including the QGT. Braeuning et al. (1998) investigated a
nonlinear model for partially penetrating vertical wells with

Nomenclature

Roman symbols
B volume factor, m3=m3

Cf rock compressibility, Pa�1

Ct total compressibility, Pa�1

Ct1f total compressibility of the fracture system in the SRV
region, Pa�1

Ct1m total compressibility of the matrix system in the SRV
region, Pa�1

Ct2 total compressibility in the outer region, Pa�1

Cq fluid compressibility, Pa�1

h formation thickness, m
k formation permeability, m2

k1f fracture-system permeability in the SRV region, m2

k1m matrix-system permeability in the SRV region, m2

k2 formation permeability in the outer region, m2

L horizontal well length, m
LfLDi dimensionless length of the left wing of the i th

hydraulic fracture, dimensionless
LfLi length of the left wing of the i th hydraulic fracture, m
LfRDi dimensionless length of the right wing of the i th

hydraulic fracture, dimensionless
LfRi length of the right wing of the i th hydraulic fracture, m
m fracture number, integer
M12 mobility ratio of the SRV region to the outer region,

dimensionless
p formation pressure, Pa
p1f fracture-system pressure in the SRV region, Pa
p1m matrix-system pressure in the SRV region, Pa
p2 formation pressure in the outer region, Pa
pi initial formation pressure, Pa
pw wellbore pressure, Pa
pwD dimensionless wellbore pressure, dimensionless
pwDl dimensionless wellbore pressure calculated by the

linear model, dimensionless
pwDnl dimensionless wellbore pressure calculated by the

nonlinear model, dimensionless
q flow rate from point source, m3=s
qD dimensionless flow rate from point source,

dimensionless
q�D flow-rate function of qD, defined in Eq. (42)
qf flow-rate density, m2=s
qfD dimensionless flow-rate density, dimensionless
q�fD flow-rate function of qfD, q�fD ¼ qfDðnw þ 1Þ,

dimensionless
qfDi;j dimensionless flow-rate density of the j th segment in

the i th hydraulic fracture, dimensionless
q�fDi;j flow-rate function of qfDi;j, q�fDi;j ¼ qfDi;jðnw þ 1Þ,

dimensionless
qfi;j flow-rate density of the j th segment in the i th

hydraulic fracture, m2=s
Q sc total production rate under surface conditions, m3=s
r radial distance in reservoir formation, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, m

rm radial distance in a spherical matrix block, m

r1 radius of a spherical matrix block, m
rf SRV radius, m
s Laplace transform variable, dimensionless
t time, s
W12 storability ratio of the SRV region to the outer region,

dimensionless
x; y Cartesian x; y coordinates, m
xD; yD dimensionless Cartesian x; y coordinates, dimensionless
xDi;j; yDi;j dimensionless coordinates of the j th end point in the i

th hydraulic fracture, dimensionless
xi;j; yi;j coordinates of the j th end point in the i th hydraulic

fracture, m
xmi;j; ymi;j coordinates of midpoint of the j th segment in the i th

hydraulic fracture, m
xmDi;j; ymDi;j dimensionless coordinates of midpoint of the j th

segment in the i th hydraulic fracture, dimensionless
xwDi; ywDi dimensionless coordinates of the intersection of the i th

hydraulic fracture and the horizontal wellbore,
dimensionless

xwi; ywi coordinates of the intersection of the i th hydraulic
fracture and the horizontal wellbore, m

Greek Symbols
a dimensionless nonlinear flow coefficient, dimensionless
DLfLDi dimensionless discrete-segment length of the left wing

of the i th hydraulic fracture, dimensionless
DLfRDi dimensionless discrete-segment length of the right

wing of the i th hydraulic fracture, dimensionless
Dyi difference between ywi and ywi�1, Dyi ¼ ywi � ywi�1, m
dp relative difference between the pressures calculated by

the nonlinear and linear models, dimensionless
k1 interporosity flow coefficient in the SRV region,

dimensionless
l fluid viscosity, Pa � s
n1f transformed pressure for p1fD, defined in Eq. (28)
n1m transformed pressure for p1mD, defined in Eq. (29)
n2 transformed pressure for p2D, defined in Eq. (30)
nw transformed pressure for pwD, defined in Eq. (31)
q fluid density, kg=m3

t velocity, m=s
/ formation porosity, fraction
/1f fracture-system porosity in the SRV region, fraction
/1m matrix-system porosity in the SRV region, fraction
/2 formation porosity in the outer region, fraction
x1f storability ratio of fracture system in the SRV region,

dimensionless

Superscript
� Laplace space

Subscript
D dimensionless
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