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a b s t r a c t

Due to continuous increases in water demand, the need for seasonal forecasts of available groundwater
resources becomes inevitable. Hydrogeological models might provide a valuable tool for this kind of
resource management. Because predictions over short time horizons are foreseen, the reliability of model
outputs depends on accurate estimates of the initial conditions (ICs), as well as the estimated parameter
values, boundary conditions and forcing terms (e.g., recharge, as well as sinks and sources). Here, we pro-
vide an inverse procedure for estimating these ICs. The procedure is based on an adaptive parameteriza-
tion of the ICs that limits over-parameterization and involves the minimization of an ad hoc objective
function. The quasi-Newton algorithm is used for the minimization, and the gradients are computed with
an adjoint-state method. Two test cases based on a real aquifer that are designed to evaluate the capa-
bility of the method were addressed. It is assumed that the boundary conditions, hydraulic parameters
and forcing terms are known from an existing hydrogeological model. In both test cases, the proposed
method was quite successful in estimating the ICs and predicting head values that were not used in
the calibration. 50 calibrations for each test case have been performed to quantify the reliability of the
predictions.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Seasonal forecasts of groundwater resources are increasingly
required for optimal management, especially to cover agricultural
water needs during summer periods. Because seasonal forecasts
usually cover a short period of time (one month or so), their pro-
duction is very challenging because of groundwater system inertia,
which may retain the memory of the initial conditions (ICs) in the
simulation results over the entire period covered by the forecast.

The need for accurate ICs for operational forecasting is well
known in climate modeling (e.g., Collins and Allen, 2002) and in
modeling of seasonal surface flow (e.g., DeChant and Moradkhani,
2011). The relative importance of ICs for seasonal hydrologic fore-
casting has been analyzed by Li et al. (2009), who showed that the
reliability of predictions depends on the uncertainties related to
the ICs, and that the impacts of the ICs are influenced by the vari-
ability in the physical characteristics of the basins and the forcing
terms acting on them.

Because groundwater modeling usually addresses either steady-
state conditions or covers long periods of time, the estimation of ICs

has received very little attention compared to the efforts that have
been dedicated to model parameter estimation (Sun, 1994; Carrera
et al., 2005). ICs are usually set using a steady-state solution (Hill
and Tiedeman, 2007) computed with average inflows and outflows.
Alternatives include the use of interpolated measured heads based
on contour maps (Ting et al., 1998), the use of more elaborate inter-
polation techniques, such as kriging (Nobi and Das Gupta, 1997) or
the use of computed heads from a previous simulated stress period
(Cheng et al., 2011). However, inaccurate ICs can significantly
impact simulation periods for years in confined aquifers or for dec-
ades in unconfined aquifers (Rushton and Wedderburn, 1973) and
can lead to inaccurate parameter estimates (Liu et al., 2009).

ICs are reference head values for the computation of changes in
heads (Franke et al., 1987), and the results of simulations that
cover short time horizons are strongly correlated with these refer-
ence values. Therefore, the reliability of this type of predictions is
strongly dependent on the reliability of the ICs. This motivates
our work, which develops an inverse methodology to estimate
ICs on the basis of head observations. We assume that a hydroge-
ological model already exists, in which the hydrodynamic param-
eters have been calibrated beforehand over a long period of time,
and that the effects of approximations related to boundary condi-
tions can be neglected. We also assume that the parameters
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employed for seasonal predictions (short periods of time) are iden-
tical to those estimated for simulations covering long time periods
(typically several years). These assumptions avoid the correlations
between ICs and parameters that may appear when ICs and param-
eters are estimated simultaneously, as shown by Liu et al. (2009).

The first section of the paper is dedicated to the adaptive
inverse procedure that we apply to estimate the ICs. As an IC solu-
tion has essentially the same size as the flow grid used to solve the
forward problem, a multi-scale parameterization technique that
uses local parameter values as seeds for interpolation over the
whole flow domain is employed. Gradients of the objective func-
tions are approximated via a purposely derived adjoint-state
method. Numerical experiments are then presented in the second
section. With the aim of evaluating the accuracy and robustness of
the method, the latter is tested against two examples derived from
an actual setting involving a heterogeneous limestone aquifer that
differ in terms of the number of observation wells and the number
of reference heads per well. Changing the amount of information
included in the inversion for ICs is expected to influence, at a min-
imum, the accuracy of the solutions.

2. Mathematical model and estimation of initial conditions

For the sake of simplicity, we address here a situation involving
two-dimensional flow in a confined aquifer.We note that the devel-
opments proposed hereafter would hold for three-dimensional
problems in either confined or unconfined systems. The usual
mathematical model is depicted by the following equations:

S @h
@t ¼ r � ðTrhÞ þ f in X; t 2 ½0; Tf �

hðx; y;0Þ ¼ h0ðx; yÞ in X

hðx; y; tÞ ¼ hDðtÞ on @XDt 2 ½0; Tf �
�Trhðx; y; tÞ � n ¼ qNðtÞ on @XN; t 2 ½0;Tf �

8>>>><
>>>>:

ð1Þ

where S is the storativity [–], h is the head [L], T is the transmissivity
tensor [L2 T�1], and f is the sink-source term [LT�1]. X is the model
domain, @XD and @XN are partitions of the domain boundaries @X
that correspond to Dirichlet and Neumann conditions, and n is
the unit vector normal to the boundary, counted positive outward.

hDðtÞ are the prescribed head values at the Dirichlet boundaries,
qNðtÞ are the prescribed fluxes at the Neumann boundaries and

h0ðx; yÞ represent the ICs defined over the whole domain X. Tf is
total simulated period.

Due to the complexity of the parameter distribution and the
time varying sink-source terms, the flow equation is solved numer-
ically, which leads to a discretized form that is written as:

Ahk ¼ bk�1 ð2Þ
where k is the time step counter, h is the vector of hydraulic heads,
A is the system matrix, which depends on the model geometry and
parameters, and b is the right hand side vector, which depends on
the boundary conditions, sink-source terms and heads at the previ-
ous time step k � 1.

The ICs h0 are estimated by minimizing an objective function
written in the maximum likelihood framework that is defined
as:

J h;h0
� �

¼
XN
k¼1

hk� ĥk
� �T

½W�1� hk� ĥk
� �

þl h0� ~h0
� �T

½V�1� h0� ~h0
� �

ð3Þ

where h represents the computed heads, ĥ represents the measured

heads, and N is the number of time steps. ~h0 represents prior esti-

mates of the initial heads, and h0 represents the computed initial

heads. The index T stands for the transpose operator. W represents
a prior estimate of the covariance of the measurement errors asso-
ciated with the heads, whereas V represents a prior estimate of the
covariance of measurement errors associated with the ICs. Both
terms in the objective function represents the quadratic errors
between computed and measured heads at different locations and
for N different times. The quadratic errors for the initial conditions
are explicitly expressed to provide them a significant weight for the
minimization. For this reason, we also set l ¼ N to balance the two
terms in the objective function.

Assuming that the measurement errors are known and uncorre-
lated in space and time, the matrices W and V are defined by:

W�1 ¼ V�1 ¼ 1=r2
hI ð4Þ

where r2
h is the estimated variance of the measurement errors, and I

is the identity matrix. l is a weighting coefficient that allows the
balancing of the two terms in the objective function.

Depending on the numerical method used to solve (1), the ICs
have to be determined for each node or element of the discretized
domain. Since groundwater flow models require several thousand
nodes or elements, the optimization problem minimizing (3) is
over-parameterized. To overcome this problem, we rely upon the
adaptive parameterization technique suggested by Ackerer et al.
(2014) and Hassane and Ackerer (2017). This approach was applied
initially to parameter estimation; here, it is extended to IC esti-
mates on a grid (that is, the IC grid), which is independent of the
grid used to solve the flow model (that is, the flow grid). Because
hydraulic heads vary smoothly in space, we assume that the ICs
over X can be approximated as a sum of piecewise linear functions,
with each function being defined over a single triangle. Therefore,
the IC grid is a triangulation of X and is chosen to be very coarse at
the beginning of the algorithm (Fig. 1). During optimization, the IC
grid is progressively refined (Fig. 2) whenever the value of the
objective function remains too high. It is worth noting that the flow
grid beneath the IC grid can be of any type, and that other methods
for approximating the ICs could be chosen. The ICs on the flow grid
are obtained by mapping the ICs defined on the IC grid to the flow
grid using linear interpolation, to be consistent with the approxi-
mation of the IC. The details of the algorithm can be found in
Ackerer et al. (2014) and Hassane and Ackerer (2017).

After successive refinements of the IC grid, the number of
degrees of freedom of the optimization problem (one per vertex of
the IC grid) may increase strongly, which renders the adjoint-state
method (e.g., Sun and Yeh, 1992; Townley andWilson, 1985) prefer-
able to standard sensitivity approaches, which require considerable
computing time when many parameters are sought (Medina and

Fig. 1. IC grid (in blue) and flow grid (in black) during the first step of the
parameterization.
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